

30

CM

MicroBooNE detector, modelling and performance

Anne Schukraft

Fermilab

October 16th, 2018 NuInt Workshop, L'Aquila

Year Three prong event

Run 3493 Event 27435, October 23rd, 2015

Outline

This talk will introduce the MicroBooNE experiment and discuss tools and approaches common to all cross section analyses presented today:

- Experiment introduction
- Data samples
- Cosmic rejection
- Reconstruction performance
- Systematics evaluation

MicroBooNE analyses presented at NuInt2018:

The MicroBooNE experiment

Fermilab's short baseline program: arXiv:1503.01520 [hep-ex]

The MicroBooNE experiment

Science goals

MicroBooNE

- Resolve the low-energy excess observed by MiniBooNE
- Study ν -Argon cross sections

MicroBooNE + SBND + ICARUS

 v_e appearance & v_μ disappearance sterile neutrino search

SBND Target: Ar

Technology:

LArTPC

Operation: 2020

Main Injector - 120 GeV protons

NuMI

Fermilab's high-energy neutrino beam)

BNB and NuMI fluxes @ MicroBooNE

BNB

NuMI

Public Note **MICROBOONE-NOTE-1031-PUB** http://microboone.fnal.gov/wp-content/uploads/ MICROBOONE-NOTE-1031-PUB.pdf • The ν_e contribution to the flux is large (~ 5% compared to ~ 0.5% in BNB). This makes for some interesting ν_e measurements!

LArTPC technology

Strengths

- mm-scale resolution
- Protons visible down to energies of few

10s of MeV

- Calorimetric information
- 4π angular coverage

Challenges

- Operations: purity and HV
- Cosmic backgrounds
- Heavy nuclear target
- Same as for other detectors: neutrons

- 87 tons active LAr volume
- 170 tons total LAr volume
- Operated at 87 K
- Operated at 1.24 atms

- Large volume filled with liquid-argon
- Strong electric field

- Light system behind wire plane for scintillation light detection
- Prompt scintillation light • signal is important for rejecting cosmic backgrounds

LArTPC thresholds

3 mm wire spacing 60° angles between wires

3 wire planes 8192 wires total

Wire spacing ultimately determines LArTPC resolution and detection thresholds

Single wire deposit No angular reconstruction but reconstructable energy deposit (caveat: noise level)

>= 2 wire deposit

Lowest possible threshold for track reconstruction for tracks perpendicular to wires

10/15/18

>= 2 wire deposit Steep angles require longer track lengths (thresholds), but

track is more perpendicular in other plane

LArTPC thresholds

ArgoNeuT: Threshold reached using manual reconstruction

MicroBooNE Status:

1. Proof of principle Automatic reconstruction and identification of protons successfully demonstrated

> Public Note MICROBOONE-NOTE-1025-PUB http://microboone.fnal.gov/wpcontent/uploads/MICROBOONE-NOTE-1025-PUB.pdf

2. Reliable proton ID and calorimetric reconstruction

See talk by Raquel Castillo Fernandez at this conference

CC 1 μ Np & CC 1 μ 2p

3. Lowering proton threshold & increasing efficiency at low-energy

Work on-going. Improvements will go into our next round of analyses

Anne Schukraft | Fermilab

Experiment introduction

Data samples

Cosmic rejection

Reconstruction performance

Systematics evaluation

BNB data taking

POT

BNB data taking

0

Anne Schukraft | Fermilab

NuMI data taking

POT

Experiment introduction

Data samples

Cosmic rejection

Reconstruction performance

Systematics evaluation

- Public Note MICROBOONE-NOTE-1002-PUB
- http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1002-PUB.pdf
- Total drift time is 2.3 ms
- Beam spill arrival time window is much shorter for both BNB and NuMI

Cosmic rejection flow

Step 2: TPC reco chain

Note: All analyses presented today use this **Pandora** chain.

Eur. Phys. J. C78 (2018) no.1, 82 https://arxiv.org/abs/1708.03135

Other approaches e.g. machine learning techniques are also being developed in MicroBooNE

Public Note MICROBOONE-NOTE-1045-PUB http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1045-PUB.pdf

Experiment introduction

Data samples

Cosmic rejection

Reconstruction performance

Systematics evaluation

Simulation-based reconstruction efficiencies

Reconstruction efficiencies for different interaction channels for the Pandora algorithm suite for pure neutrino events (no cosmics simulated, no cosmic tagging algorithms applied)

Eur. Phys. J. C78 (2018) no.1, 82 https://arxiv.org/abs/1708.03135

Tables include overall numbers folded with BNB energy spectrum.

Data-driven performance measurements

TPC reconstruction efficiency measurement:

2. Track resolution

3. Vertex resolution

Resolution	Data	MC
x	$0.15 \pm 0.02 \text{ cm}$	$0.133 \pm 0.005 \text{ cm}$
y	$0.24 \pm 0.05 \text{ cm}$	$0.182 \pm 0.006 \text{ cm}$
z	$0.18 \pm 0.02 \text{ cm}$	$0.209 \pm 0.009 \text{ cm}$

Public Note MICROBOONE-NOTE-1049-PUB http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1049-PUB.pdf

Good data-MC agreement in reconstruction performance measurements

Anne Schukraft | Fermilab

http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1049-PUB.pdf

Experiment introduction

Data samples

Cosmic rejection

Reconstruction performance

Systematics evaluation

Systematic uncertainty estimation in MicroBooNE

- First generation of analyses evaluating systematics by simulating or re-weighting parameters and propagating the effects through all the chain
- Many parameters not yet well constraint through internal or external measurements.

⇒ Systematic uncertainties you'll see today are very conservatively estimated

We are working on improved constraints for next generation analyses

Categories of systematic uncertainties in MicroBooNE

Example: ν_{μ} CC inclusive error budget

	Error Source	Method	Estimated Relative Uncertainty
	Beam Flux	Estimated with multisim variations	12%
Discussion	Cross Section Modeling	Estimated with multisim variations	4%
on followir	g Detector Response	Estimated with unisim variations	19%
slides	POT Counting	Toroids Resolution	2%
	Cosmics (in-time)	Estimated from data-driven cosmic model	7%
	Cosmics (out-of-time)	Estimated from off-beam statistics	1%
	Beam Timing Jitter	Estimated from on- minus off-beam flashes	4%
	Future iterations are	tuning our	

Future iterations are tuning our beam window for triggering to decrease this uncertainty

Measured from off-beam data taking. More data (e.g. shutdown data!) decreases the uncertainty

Our very conservative estimate of CORSIKA cosmics simulation. We are switching to using cosmic data for this, which will decrease the uncertainty

Beam Flux

BNB

- Evaluation of flux uncertainties is based on the MiniBooNE/SciBooNE techniques and > 15 years of experience running neutrino experiments in the BNB
- Hadron production uncertainties
 - $\pi +, \pi -, K^+, K^-$, and K^0_L
- Non-hadron production uncertainties:
 - Mismodeling of horn current distribution
 - Horn current miscalibration
 - Pion and nucleon scattering cross sections on beryllium and aluminum
- We use a **multisim strategy**, creating a set of universes with different variations of all parameters
- Work ongoing to confirm with updated beamline simulation

NUMI

Currently estimating NuMI uncertainties using PPFX software following MINERvA and NOvA techniques

Anne Schukraft | Fermilab

Cross section model uncertainties

- Default: GENIE v2_12_2 + empirical MEC model
- All parameters are varied within the 1σ estimates given in the GENIE manual
- We use a multisim strategy, creating a set of universes with different variations of all parameters
- Our cross section uncertainty modeling is based on the experience from T2K and MINERvA

• Currently developing a re-weighting strategy for MEC uncertainties based on differences between the GENIE empirical and Valencia QE&MEC models. Will be included in publication of the CC incl.

Comparison to different model sets

Starting to compare our results with different models and generators by propagating through our simulation chain

Also used for comparison in

T2K, MINERvA

T2K

Detector response uncertainties

Largest contributor to systematic error budget:

Unisim simulation Generate a data sample for each uncertainty that is varied. *Note: all data samples use identical generated interactions*

Electron and light propagation uncertainties

Present implementation	Future implementation
"Extreme case" simulation	
External models	Opgoing MicroPooNE
External constraints	calibration measurements will constrain these uncertainties further
Alternative MicroBooNE model	
Conservative estimate	
Updated vs. current simulation	New light yield simulation becomes new default simulation
	Present implementation"Extreme case" simulationExternal modelsExternal constraintsAlternative MicroBooNE modelConservative estimateUpdated vs. current simulation

Readout response uncertainties

Readout response	Present implementation	Future implementation	
Dynamic induced charge	Updated vs. current simulation	New dynamic induced charge simulation becomes default simulation	
Saturating channels	"Extreme case" simulation	Working on more	
Misconfigured channels	"Extreme case" simulation	realistic treatment	
Wire response function	Constraints from first MicroBooNE data	Improvements in noise	
Wire noise	Constraints from first MicroBooNE data	filtering and signal processing, and usage of cosmic data as background	
PMT PE noise	Constraints from first MicroBooNE data	expected to reduce impact of these effects	
IINST 12 (2017) no 08 PO	18003 IINST 13 (2018) no 07 P07006 & P07006	-	

Readout response uncertainties

Readout response	Present implementation		
Dynamic induced charge	Updated vs. current simulation		
Saturating channels		$ u_{\mu}$ CC incl.	$oldsymbol{ u}_{\mu}$ CC $oldsymbol{\pi}^{0}$
Misconfigured channels	Total systematic uncertainty	25%	31%
	Detector response uncertainty	19%	21%
Wire response function	Dynamic induced charge uncertainty	15%	≈15%
Wire noise	 Most parameters contribute on the 1-2% level 		
PMT PE noise	 Dynamic induced charge is by far the largest contributor to the detector response uncertainty 		

Dynamic induced charge effect

(d) Weighting potential on a Y wire.

(c) Weighting potential on a V wire.

- Drifting electrons induce charge not only on the central wire but also on neighboring wires
- This effect is observed in data, but not modeled in our default simulation
- The impact on our reconstruction and analyses is strongest for tracks traveling towards the wire plane
 we have verified that we can see this in several analyses. Simulation of dynamic

induced charge improves our data/MC agreement

- Comparing the impact of "dynamic induced charge on/off" and use as systematics is exaggerating the effect
- Future simulation will include simulation of dynamic induced charge as default
- MicroBooNE is the first LAr TPC experiment to take this into account

Today's presentations

MicroBooNE has a lot of new work to show since last NuInt!

MicroBooNE detector, modelling and performance	Anne Schukraft	
Gran Sasso Science Institute (GSSI)	16:30 - 17:00	
MicroBooNE charged-current inclusive cross section measurement	Marco Del Tutto	/
Gran Sasso Science Institute (GSSI)	17:00 - 17:25	
MicroBooNE charged-current neutral pion cross section measurement	Joel Musseau	
Gran Sasso Science Institute (GSSI)	17:25 - 17:50	
MicroBooNE electron neutrino inclusive cross section	Colton Hill	
Gran Sasso Science Institute (GSSI)	17:50 - 18:15	
MicroBooNE charged-current analyses with final state protons	Raquel Castillo Fernandez	
Gran Sasso Science Institute (GSSI)	18:15 - 18:40	\backslash

MicroBooNE's first single differential cross sections (Paper in preparation)

- Developing tools for cosmic rejection
- pre-selection for majority of current analyses

First ν_{μ} CC π^{0} production on Argon (Paper under collaboration review)

- first time exercising shower reconstruction
- π^{0} are in important background to constrain in LEE searches

MicroBooNE's first NuMI analysis

- Exercising NuMI analysis flow
- Exercising v_e reconstruction and identification

MicroBooNE's first proton analysis

- Exercising calorimetric reconstruction
- Exercising proton identification

MicroBooNE cross sections beyond NuInt

Ongoing work towards improved performance

- Detector physics measurements to improve systematics constraints
- Integration of cosmic tagger system into analysis flow for better cosmic rejection
- Development of alternative reconstruction chains (e.g. machine learning) in particular for better shower reconstruction
- Improvements to particle ID and detection thresholds

Other analyses in progress

- Neutral-Current elastic scattering, charged-current 0π , 1μ + 1p channel
- charged pion production, CC and NC neutral pion production, Coherent pion production
- Kaon production

Backup

Pandora reconstruction performance in the presence of cosmics

10/15/18

Data-driven tracking efficiency estimation

- Overall reconstruction efficiency is high: (97.1 \pm 0.1 (stat) \pm 1.4 (sys)) %
- Measured reconstruction efficiency from data agrees with the predicted efficiency in the simulation
 -> confirmation of our simulation and reconstruction chain

Data-driven Track resolution

Developed more data-driven methods to build trust into our simulation based reconstruction performance estimates

- Here: split track in the middle, reconstruct each ٠ half, compare the reconstructed directions
- Most important take away: Performance ٠ estimates in data and MC are very similar

Data-driven vertex resolution

http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1049-PUB.pdf z

Momentum reconstruction

Methods of momentum reconstruction in MicroBooNE

For contained muons:

- Range-based
- Calorimetric •

For contained and exiting muons

Multiple Coulomb scattering

The majority of BNB muons in MicroBooNE is exiting!

Momentum reconstruction performance

Data driven method to test the performance of MCS for exiting tracks: 0.1 Contained data track Split in 14cm segments for MCS measurement 0 -0.05 p_{range} Know momentum from range measurement

Turn into Pseudo-exiting data track by removing track segments at the end

- Bias < 5%
- Resolution < 20%, improving with momentum
- Good agreement between data and MC for this method!

Public Note MICROBOONE-NOTE-1049-PUB

http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1049-PUB.pdf 1.62e20 POT

Other uses of Multiple Coulomb Scattering

•

start

enc

•

٠

Beam flux correlation matrices (BNB)

Public Note MICROBOONE-NOTE-1031-PUB http://microboone.fnal.gov/wp-content /uploads/MICROBOONE-NOTE-1031-PUB.pdf

Beam flux uncertainties: all flavors

Public Note **MICROBOONE-NOTE-1031-PUB** <u>http://microboone.fnal.gov/wp-content</u> /uploads/MICROBOONE-NOTE-1031-PUB.pdf

