Charged Current Neutral Pion Production at MicroBooNE

Joel Mousseau University of Michigan 12th International Workshop On Neutrino-Nucleus Interactions In the Few GeV Region L'Aquila, Italy October 2018.

Sources of Photon Production

- At BNB energies, most originate from Decay of Δ to π^0 .
- Sources we classify as background:
 - Radiative delta decay $(\Delta \rightarrow \gamma + N)$
 - π⁰ from re-scattering (charge exchange)
 - Higher mass resonances.
- Further sources:
 - Anomalous (constrained by radiative delta decay).
 - Nuclear de-excitation (sub 10 MeV).

Photon Detection with LArTPCs

- Electron-gamma separation one of the hallmarks of LArTPCs.
- Measure energy deposition along a particle's trajectory.
- Gammas pair-produce into two electrons, dE / dx. profile follows 2 electrons.
- Challenge is reconstructing showers from gammas

CC π^0 Production with Neutrinos

ANL

MINERvA

MiniBooNE

- Many energy ranges and target media explored.
- Nuclear effects expected to scale as A^{2/3} cross-section as N.
- Argon largest nucleus measured to date!

CC π^0 Production with Neutrinos

- Focus on MiniBooNE: same beam line as MicroBooNE.
- MiniBooNE signal: v_{μ} + CH $\rightarrow \mu^{-}$ + π^{0} + *plus no other mesons.*
- MicroBooNE: v_{μ} + CH $\rightarrow \mu^{-}$ + π^{0} + X

Event Selection

Event Selection

Charge Scale Calibration

- Use a combination of cosmic and neutrino induced muons to calibrate dQ/dx and dE/dx.
- Gross correction of position dependent detector response.
- Performed on collection plane only.

Joel Mousseau: NuInt 2018

See MicroBooNE

1038

Event Selection

Joel Mousseau: NuInt 2018

Shower Reconstruction

- Threshold for distinguishing track / shower hits about 50 MeV.
- Consequence of high purity, and track-nature of low energy showers.
- Results in a lower efficiency of reconstructing low-energy showers, but high purity.

Event Selection

Trigger	 Given low efficiency of second shower, we split the analysis into a <i>single</i> shower and <i>two</i> shower selection.
Tracking Reco.	Cosmic Rejection Shower Recc
 At least 1 shower is higher efficiency. At least 2 shower used as cross check. 	Ar MicroBooNE Simulation Preliminary $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} + Ar \rightarrow \mu + (1 \pi^{0} \rightarrow \gamma \gamma) + X$ $v_{\mu} +$

Single Shower Selection

- Measure conversion length of single photon to ensure it is a photon.
- Exclude first bin (large number of non-photons).
- Measured conversion length agrees with Simulation.
- Single shower Efficiency (Purity) 17% (53%).

Single Shower Selection

- Final set of selection cuts removes cosmic background
- If two showers in the event, the higher energy shower is selected.
- Overlap exists between 1 and 2 shower samples.
- Each cut ~85% efficient.

Two Shower Selection

- Using two showers with similar cuts correct for missing energy from clustering and hit-thresholding using MC.
- Plot diphoton invariant mass, confirm π^0 mass in data and MC.
- Two shower efficiency (purity): 6% (64%).

Single Shower Backgrounds

- Remaining backgrounds are cosmic, and other resonant events contributing to the single π⁰ production.
- Estimate these backgrounds directly from GENIE (45% of events).

Systematic Uncertainties

Type	% Error	Affected Measurement
Flux	16%	Flux division, Background Estimation
Cross-Section	17%	Background Estimation Efficiency Correction
Detector Modeling	21%	Background Estimation Efficiency Correction
TOTAL	31%	

Systematic Uncertainties

Туре	% Error	Affected Measurement
Detector Modeling	21%	Background Estimation Efficiency Correction

• Major sources of detector modeling uncertainty:

- Induced charge on neighboring wires.
- Diffusion of charge as it propagates along the drift direction.
- Modeling of scintillation light.
- Improvements will come from:
 - Newer MicroBooNE simulation and calibration.
 - Improved shower reco. to detect lower energy showers lead to higher efficiency.

Results (At Least 1 Shower) MicroBooNE Preliminary 1.62e20 POT 3.5 GENIE Default + Emp. MEC 25 3.0 **GENIE** Alternative Flux (Arbitrary Scale) (σ)_Φ (10⁻³⁸ cm²/Ar) 1.5 1.0 $\sigma(E_{\nu}) (10^{-38} \text{ cm}^2/\text{Ar})$ 20 Genie **Alternative** 15 **Uses BS** and 10 hA 2014 5 0.5 0.0 0 One Shower 500 1000 1500 2000 2500 3000 0 Selection Neutrino energy (MeV) cm^2 $\sigma^{ u_{\mu}\mathbf{C}\mathbf{C}\pi^{0}}$ $= (1.94 \pm 0.16 \text{ [stat.]} \pm 0.60 \text{ [syst.]}) \times 10^{-38}$

First ever measurement on Ar.

Joel Mousseau: NuInt 2018

 Ar

Results

- Compare our result on Argon, to ANL and MiniBooNE results on C and D.
- Starting to probe differences between how different models predict A scaling.
- Currently, lack sensitivity to differences in FSI modeling.

Future Measurements

- Large investment in improving MicroBooNE's detector simulation and reconstruction.
- New image recognition, machine learning techniques promise better shower reconstruction, ability to detect lower energy showers
- Much more data in further MicroBooNE runs (x8 more).
- Enables a differential measurement of π^0 in π^0 and μ^- variables.

Conclusions

- MicroBooNE has performed a world's first measurement of neutrino induced π⁰ production on argon.
- Measured with both single and two photon sub-samples.
 - Both measurements consistent.
 - Select single photon as primary result due to larger efficiency.
- Currently see reasonable agreement with GENIE's A scaling.
- Sensitivity limited by detector model and reconstruction.
 - Improving detector model, including signal modeling.
 - Improving reconstruction, including the ability to detect low energy showers.

Thank you for Your Attention!

All MicroBooNE Public Notes Available Here: http://microboone.fnal.gov/public-notes/

Backup Slides

Energy Correction and Mass Peak

- Corrections applied:
 - Add energy from hits below threshold.
 - Add energy from clusters mis-id as track or cosmic.
- Both corrections derived from MC.
- Do *not* correct for uncontained clusters.

One and Two Shower Comparison

