# Introduction to theoretical uncertainties

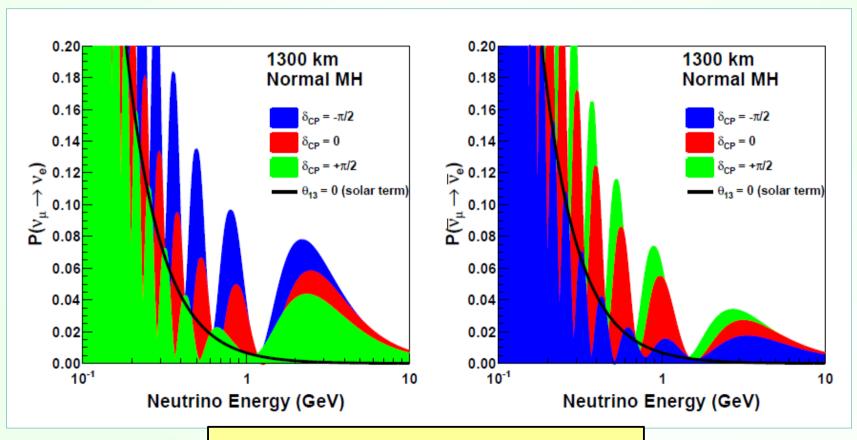
Artur M. Ankowski SLAC, Stanford University

based on Phys. Rev. C 96, 035501 (2017)

12<sup>th</sup> International Workshop on Neutrino-Nucleus Interactions in the Few-GeV region (NuInt2018), L'Aquila, Italy, Oct 15–19, 2018

### $\delta_{CP}$ from $(\nabla_e)$ event distributions

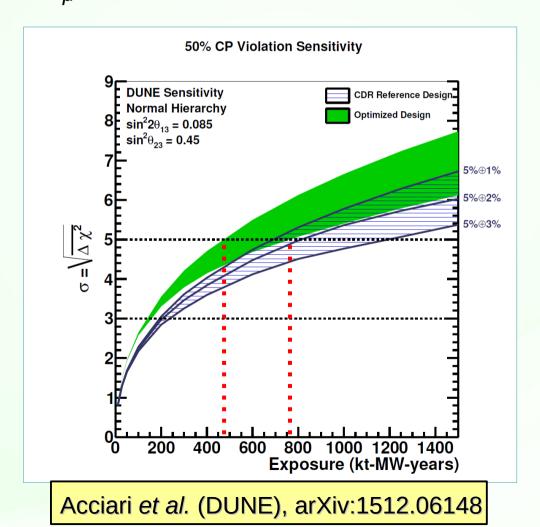
To find  $P(\overline{v}_{\mu}^{0} \rightarrow \overline{v}_{e}^{0})$  from event distributions, precise  $\overline{v}_{e}^{0}$  cross sections are necessary.



Acciari et al. (DUNE), arXiv:1512.06148

#### How relevant is the precision?

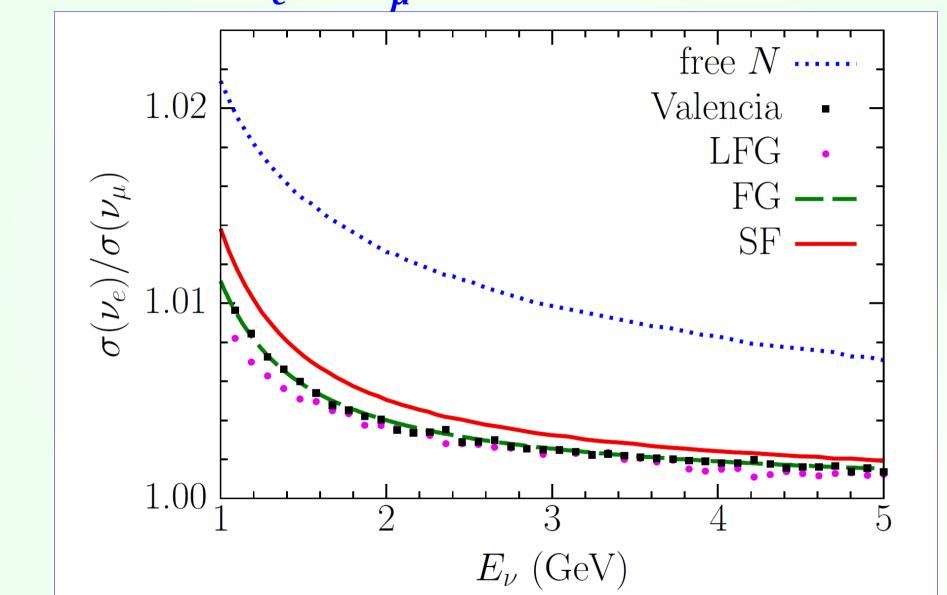
Dependence of DUNE's  $\mathcal{S}^{\bullet}$  sensitivity on exposure for  $\sigma(v_e)/\sigma(v_{\mu})$  uncertainty between 1% and 3%.



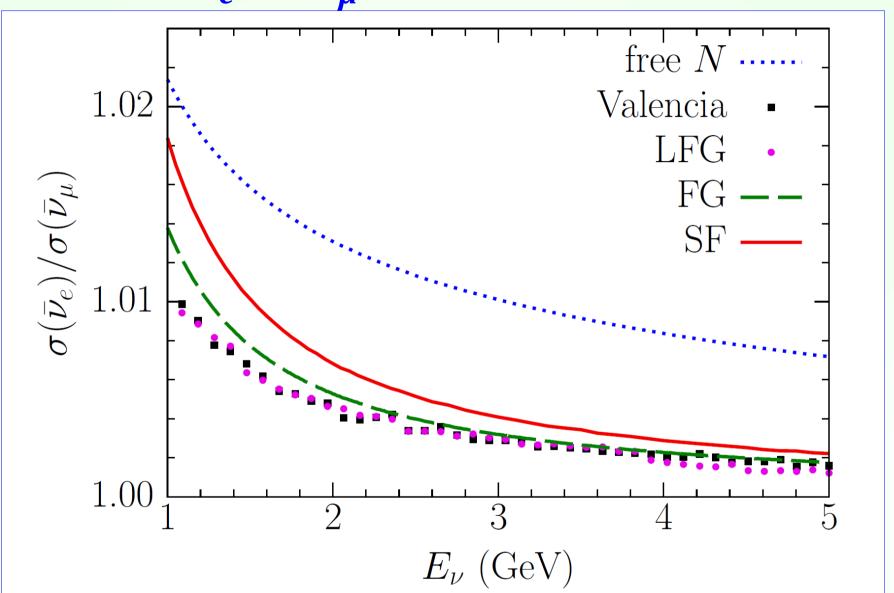
### $v_e$ to $v_u$ cross sections' ratio

- In near detectors, event statistics lower ~100x for  $v_e$ 's then for  $v_\mu$ 's. Higher flux and detector-response uncertainties.
- New concept of tagging  $K^+ \to e^+ v_e^- \pi^0$  events should allow the  $v_e$  cross section determination with 1% uncertainty. [Longhin *et al.*, EPJ C 75, 155 (2015)]
- Cross-section's dependence on the charged-lepton's mass is well known, knowing accurately nuclear  $\sigma(v_{\mu})$  we can obtain accurate  $\sigma(v_{\mu})$ .
- Radiative corrections may be relevant [Day & McFarland, PRD 86, 053003 (2012)] but can be calculated with required precision.

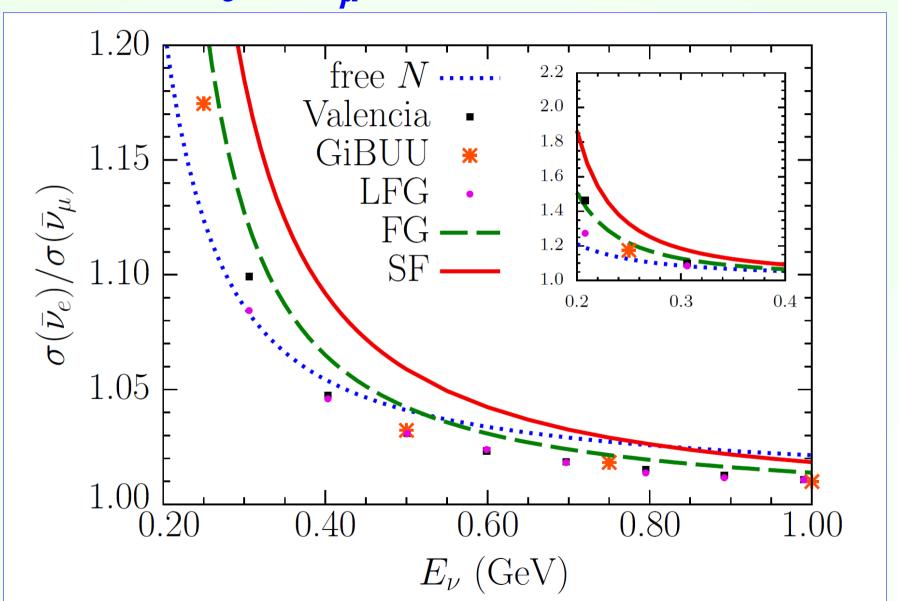
### CCQE $v_e$ to $v_\mu$ cross sections' ratio



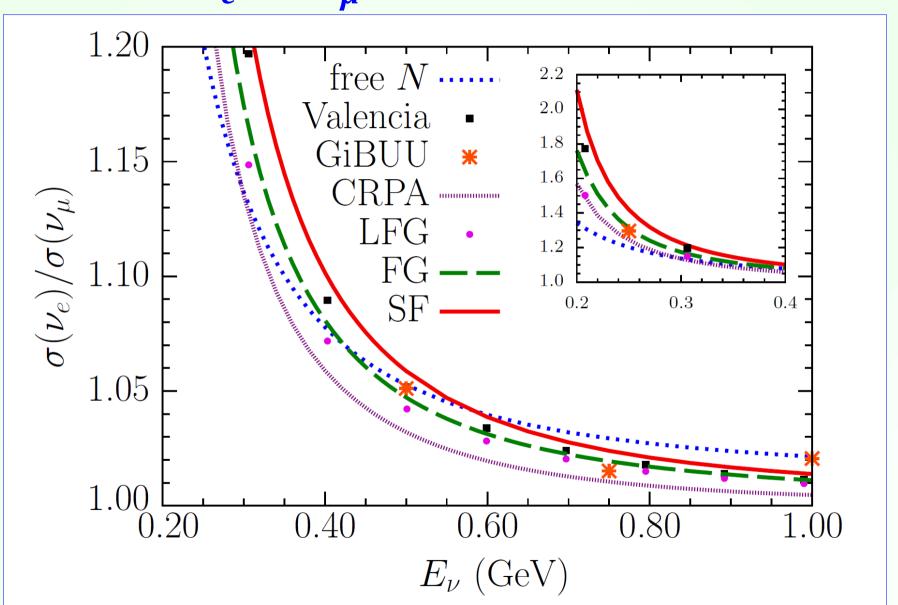
## CCQE $\bar{v}_e$ to $\bar{v}_\mu$ cross sections' ratio



## CCQE $\overline{v}_e$ to $\overline{v}_\mu$ cross sections' ratio

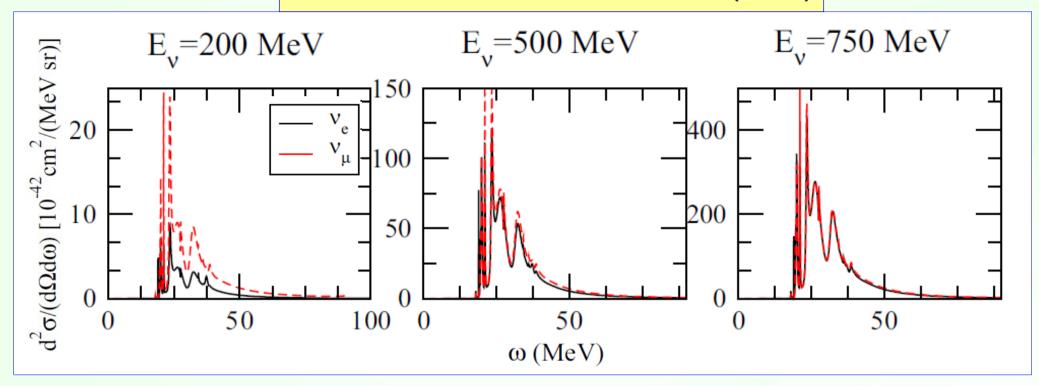


### CCQE $v_e$ to $v_\mu$ cross sections' ratio



## CCQE $v_{\mu}$ and $v_{e}$ cross sections at 5°

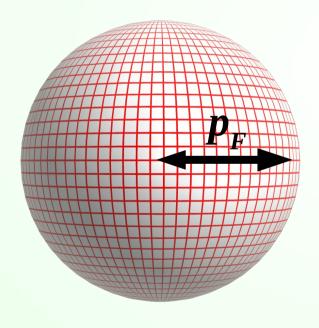
M. Martini *el al.*, PRC **94**, 015501 (2016)

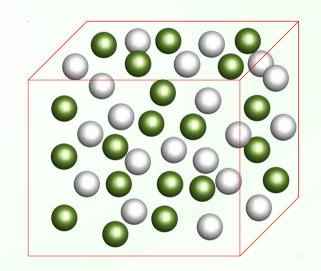


Conclusion: While at higher energies the  $\nu_{\mu}$  and  $\nu_{e}$  cross sections practically coincide, at low energies and small scattering angles the  $\nu_{\mu}$  cross section is **higher** than the  $\nu_{e}$  one, due to different |q|'s.

#### Fermi gas model

Nucleus treated as a fragment of non-interacting infinite nuclear matter of constant density. Eigenstates have definite momenta and energies  $E_p = \sqrt{M^2 + \mathbf{p}^2} - \epsilon$ .





Momentum space

Coordinate space

#### Relativistic Fermi gas

#### Lepton kinematics

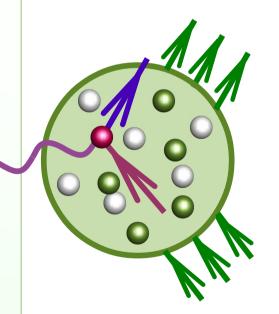
$$|\mathbf{q}| = \sqrt{E_{\nu}^2 - 2E_{\nu}|\mathbf{k}'|\cos\theta + |\mathbf{k}'|^2},$$

$$|\mathbf{k}'| = \sqrt{(E_{\nu} - \omega)^2 - m^2}.$$

#### **Nucleon kinematics**

$$|h - p_F| \le |\mathbf{q}| \le h + p_F,$$

$$h = \sqrt{(\omega - \epsilon + E_F)^2 - M^2}$$
 and  $E_F = \sqrt{M^2 + p_F^2}$ 



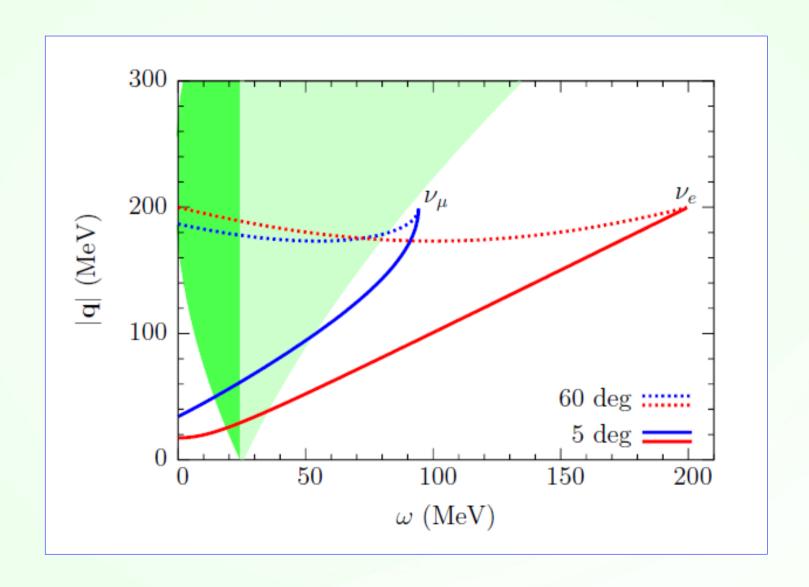
#### wlo Pauli blocking

$$\omega_{\min} = M - E_F + \epsilon$$

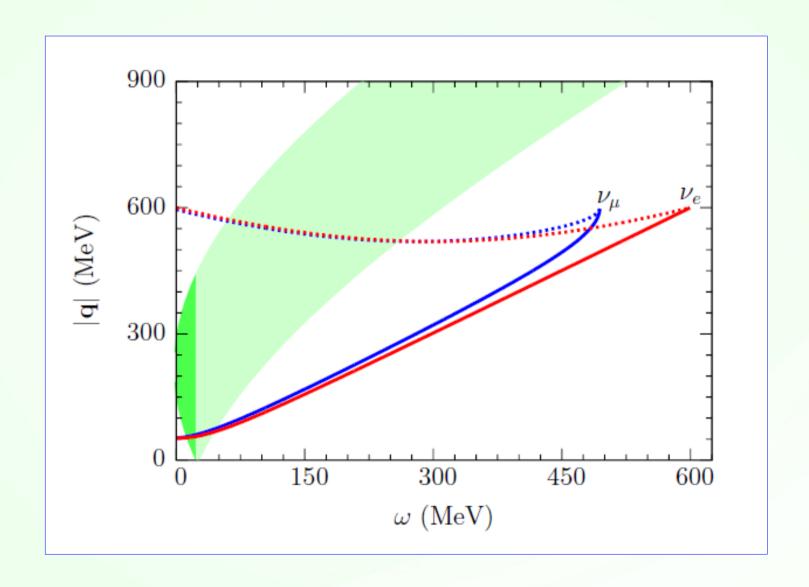
#### w/ Pauli blocking

$$\omega_{\min} = \epsilon$$

#### RFG, CCQE scattering at 200 MeV



#### RFG, CCQE scattering at 600 MeV



## Cross-sections' ratio $\frac{d\sigma(\nu_{\mu})}{d\cos\theta} / \frac{d\sigma(\nu_{e})}{d\cos\theta}$

$$\frac{d\sigma(\nu_{\mu})}{d\cos\theta} / \frac{d\sigma(\nu_{e})}{d\cos\theta}$$

|            | $E_{\nu} = 200 \; \mathrm{MeV}$ |      | $E_{\nu} = 600 \; \mathrm{MeV}$ |      |
|------------|---------------------------------|------|---------------------------------|------|
|            | 5°                              | 60°  | 5°                              | 60°  |
| RFG w/ PB  | 1.57                            | 0.62 | 1.03                            | 0.97 |
| RFG w/o PB | 0.73                            | 0.71 | 0.96                            | 0.97 |

Details of nuclear model can qualitatively change the mass dependence of the cross section.

The behavior is driven by the phase-space availability, rather than the kinematics.

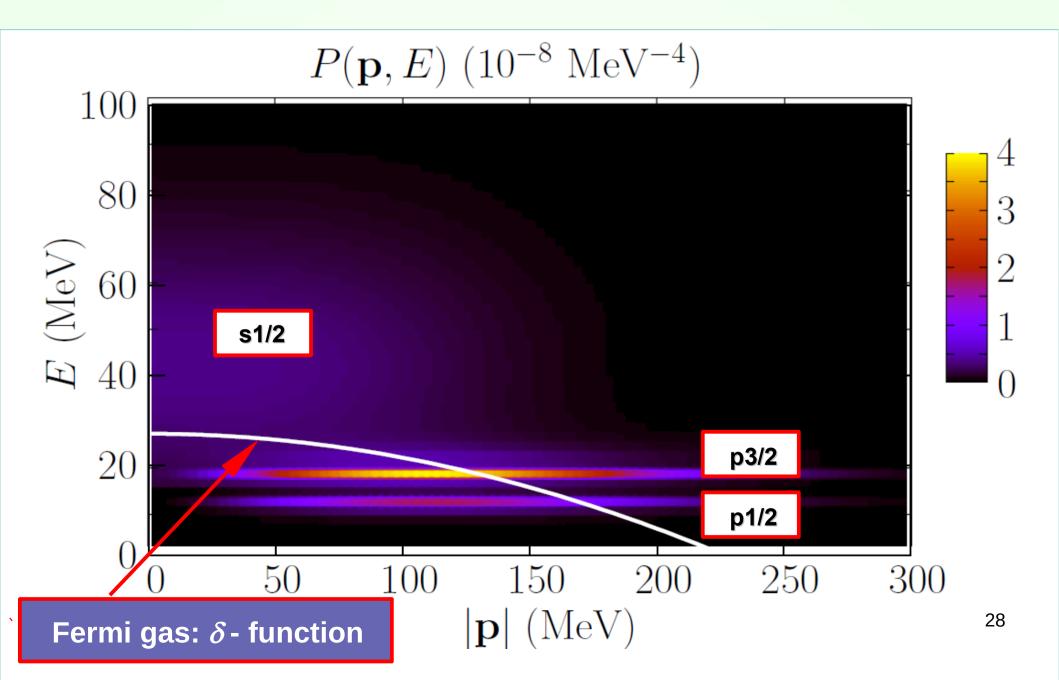
#### Relativistic Fermi gas

Reducing the available phase space, Pauli blocking changes the behavior of the cross section.

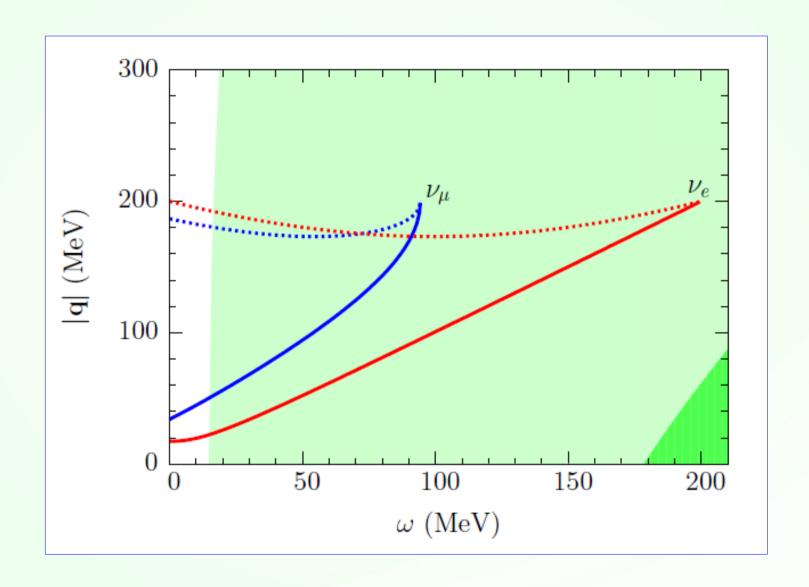
- Without Pauli blocking, the  $v_e$  cross section converges to the  $v_u$  one from below, when energy increases.
- With Pauli blocking, close to the threshold the  $\nu_{\mu}$  cross section is lower than the  $\nu_{e}$  one for any angle. At higher energies, there is a range of angles where

 $d\sigma(v_{\mu})/d\cos\theta > d\sigma(v_{e})/d\cos\theta$ .

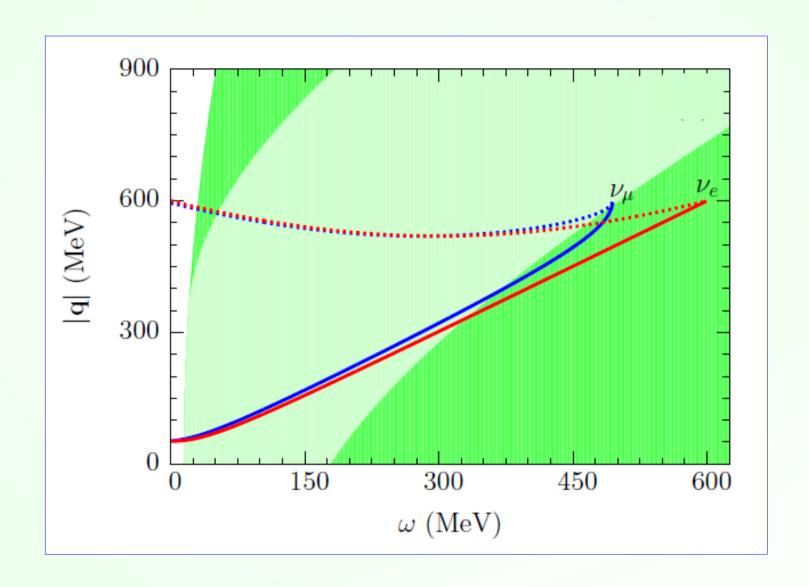
#### Shell model and spectral function



#### SF, CCQE scattering at 200 MeV



### SF, CCQE scattering at 600 MeV



## Cross-sections' ratio $\frac{d\sigma(\nu_{\mu})}{d\cos\theta} / \frac{d\sigma(\nu_{e})}{d\cos\theta}$

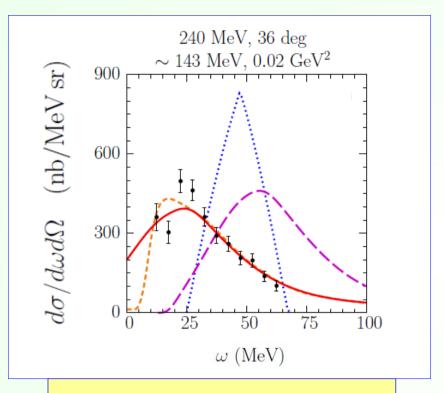
|               | $E_{\nu} = 200 \; \mathrm{MeV}$ |      | $E_{\nu} = 600 \; \mathrm{MeV}$ |      |
|---------------|---------------------------------|------|---------------------------------|------|
|               | 5°                              | 60°  | $5^{\circ}$                     | 60°  |
| RFG w/ PB     | 1.57                            | 0.62 | 1.03                            | 0.97 |
| RFG w/o PB    | 0.73                            | 0.71 | 0.96                            | 0.97 |
| Mean-field SF | 0.72                            | 0.53 | 0.96                            | 0.97 |
| Full SF       | 0.71                            | 0.52 | 0.96                            | 0.97 |

The ratio is governed mostly by the shell contribution, extracted from (e,e'p) data.

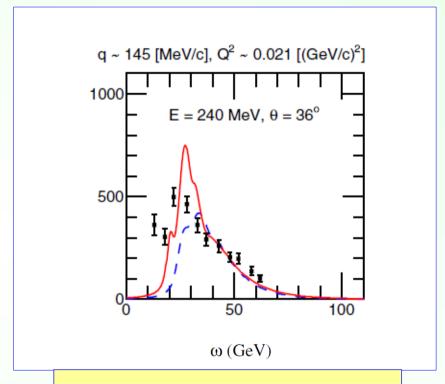
#### Shell model/Spectral function

- The available phase space is broad due to energy and momentum distributions of the shell states.
- The  $v_{\mu}$  cross section is lower than the  $v_{e}$  one for any angle, but converges to it as energy increases.

#### **Nuclear models are converging**

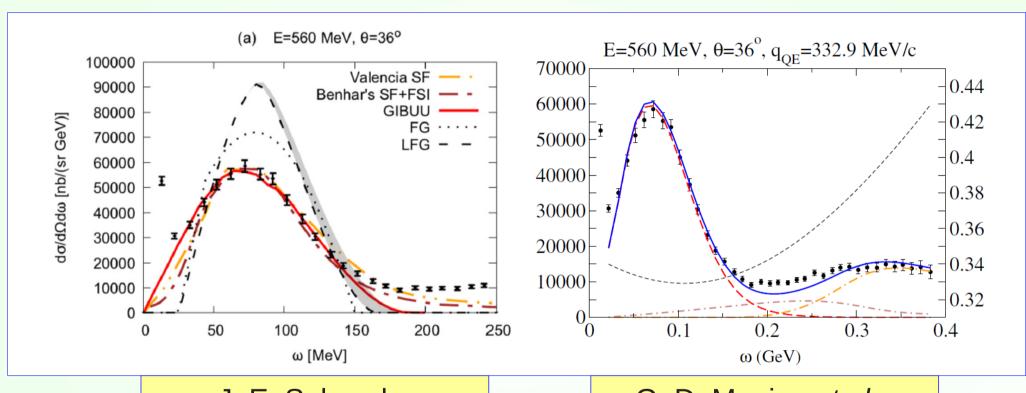


AMA et al., PRD **91**, 033005 (2015)



V. Pandey *et al.*, PRC **92**, 024606 (2015)

#### **Nuclear models are converging**



J. E. Sobczyk, PRC **96**, 045501 (2017) G. D. Megias *et al.*, PRC **94**, 013012 (2016)

#### **Model differences**

- Models developed to reproduce inclusive electronscattering data may give similar results starting from different physics assumptions.
- Treating the initial states differently, they lead to different exclusive cross sections (hadron distributions).
- For long-baseline neutrino experiments, particularly those using calorimetric energy reconstruction, exclusive cross sections are essential.

#### **Summary**

- Next-generation appearance experiments require  $\sigma(\nu_{\mu})/\sigma(\nu_{e})$  known with challenging precision.
- The ratio's precise measurement currently not possible.
   It may be necessary to rely on input from theory.
- For differential cross sections at low energies, different nuclear models may yield qualitatively different results.
- The  $\sigma(v_{\mu}) \sigma(v_{e})$  difference small above 1 GeV, but significant at energies below ~600 MeV.



**Backup slides** 

#### **Charged-Current Cross section**

#### Well-known dependence on the charged-lepton's mass

$$\frac{d\sigma}{d\omega d|\mathbf{q}|} = \frac{(G_F \cos\theta_C)^2}{2\pi} \frac{|\mathbf{q}|}{|\mathbf{k}|^2} \left[ v_{CC} R_{CC}(\omega, |\mathbf{q}|) + v_{CL} R_{CL}(\omega, |\mathbf{q}|) + v_{T'} R_{T'}(\omega, |\mathbf{q}|) + v_{TL} R_{LL}(\omega, |\mathbf{q}|) + v_{T'} R_{T'}(\omega, |\mathbf{q}|) \right]$$

$$+ v_{LL} R_{LL}(\omega, |\mathbf{q}|) + v_{T} R_{T}(\omega, |\mathbf{q}|) + v_{T'} R_{T'}(\omega, |\mathbf{q}|) \right]$$

$$v_{CC} = E_k E_{k'} + k_x k'_x + k_z k'_z, \qquad k_x = \frac{|\mathbf{k} \times \mathbf{k}'|}{|\mathbf{q}|} = k'_x,$$

$$v_{CL} = -2(E_k k'_z + E_{k'} k_z), \qquad k_y = 0 = k'_y,$$

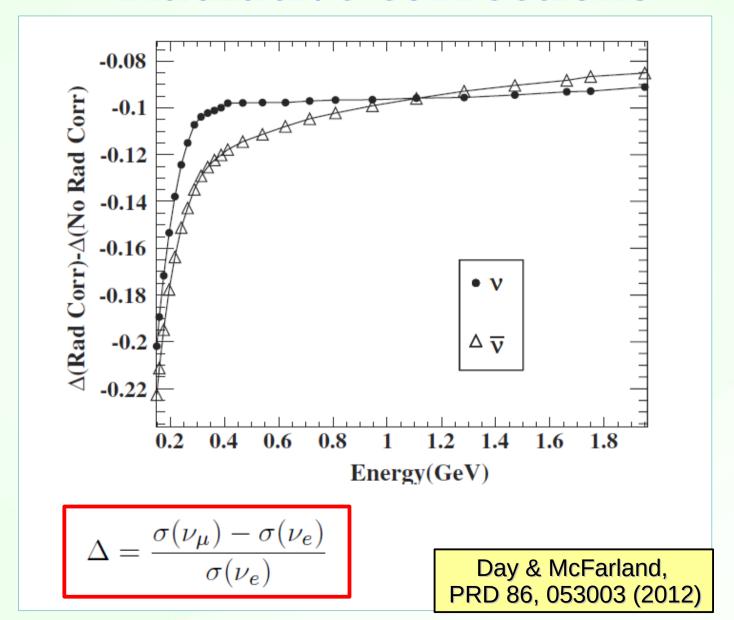
$$v_{LL} = E_k E_{k'} - k_x k'_x + k_z k'_z, \qquad k_z = \frac{|\mathbf{k} \cdot \mathbf{q}|}{|\mathbf{q}|},$$

$$v_{T} = E_k E_{k'} - k_z k'_z, \qquad k'_z = \frac{|\mathbf{k} \cdot \mathbf{q}|}{|\mathbf{q}|},$$

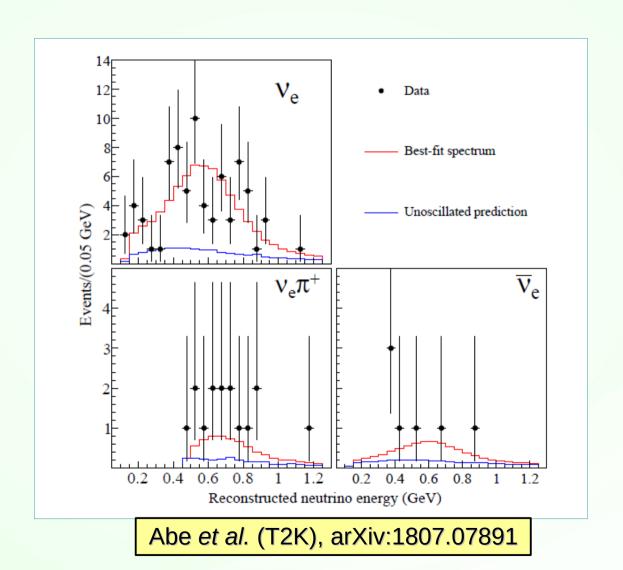
$$v_{T'} = 2(E_{k'} k_z - E_k k'_z), \qquad k'_z = \frac{|\mathbf{k}' \cdot \mathbf{q}|}{|\mathbf{q}|},$$

See e.g. Amaro et al., PRC 71, 015501 (2005)

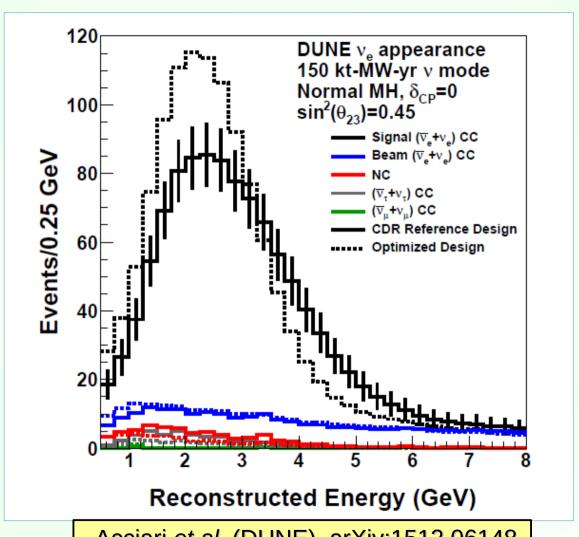
#### **Radiative corrections**



#### **Spectra in T2K**

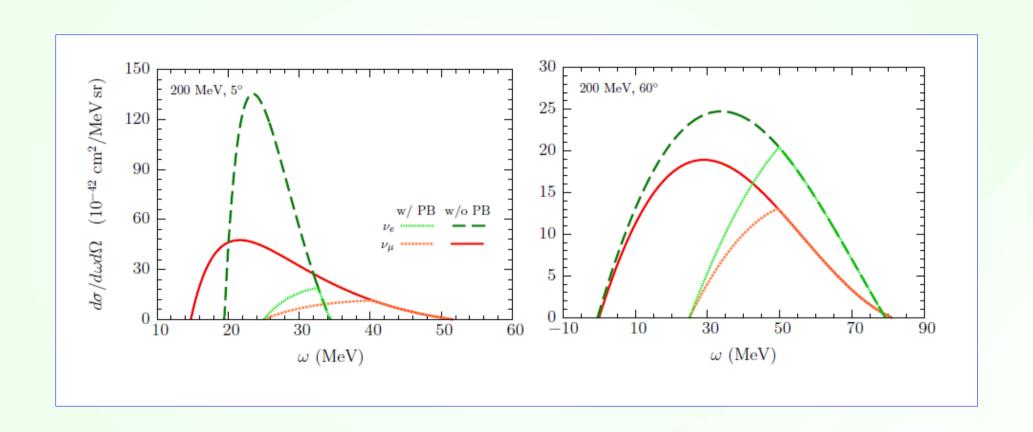


#### **Expected spectra in DUNE**

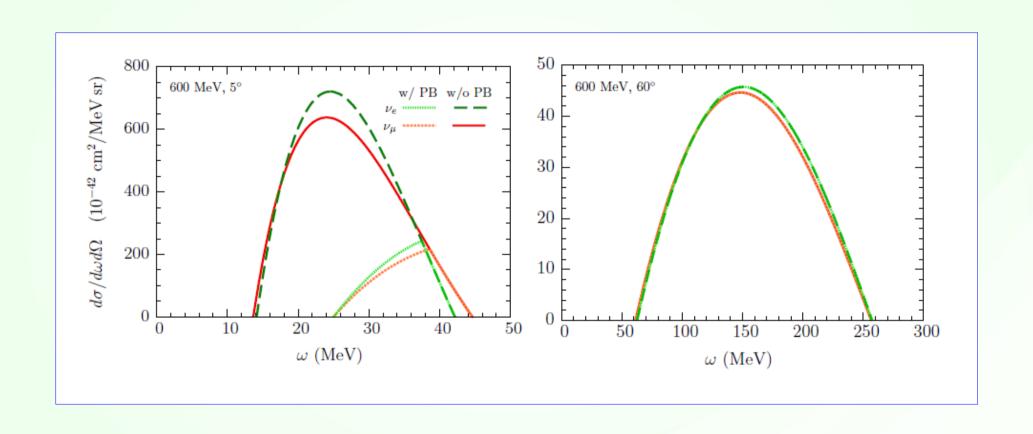


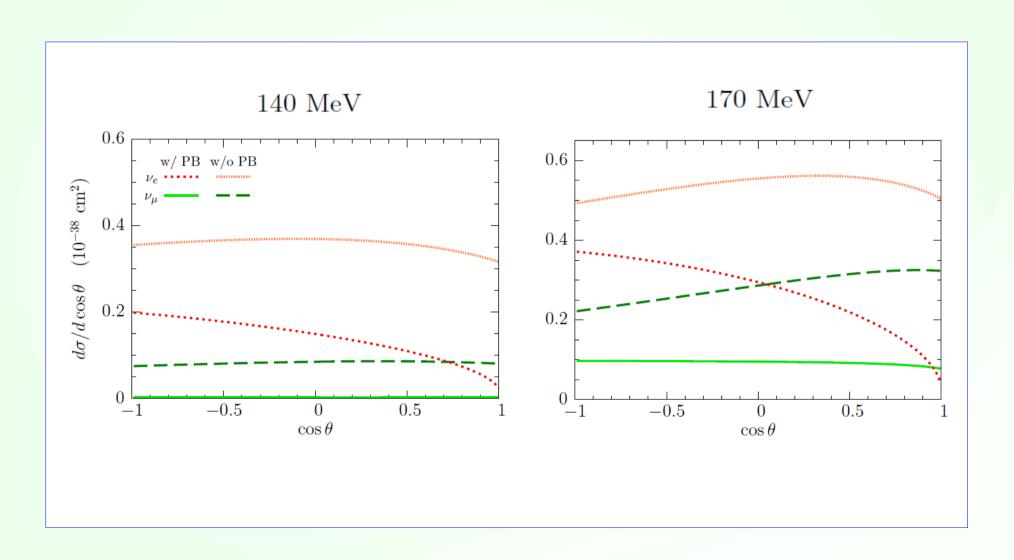
Acciari et al. (DUNE), arXiv:1512.06148

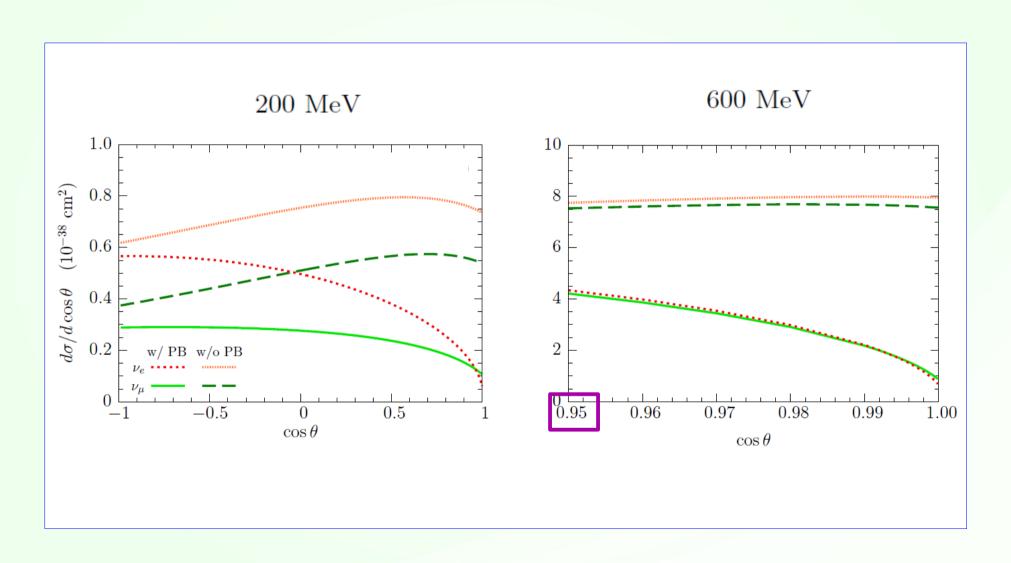
### **CCQE** scattering at 200 MeV

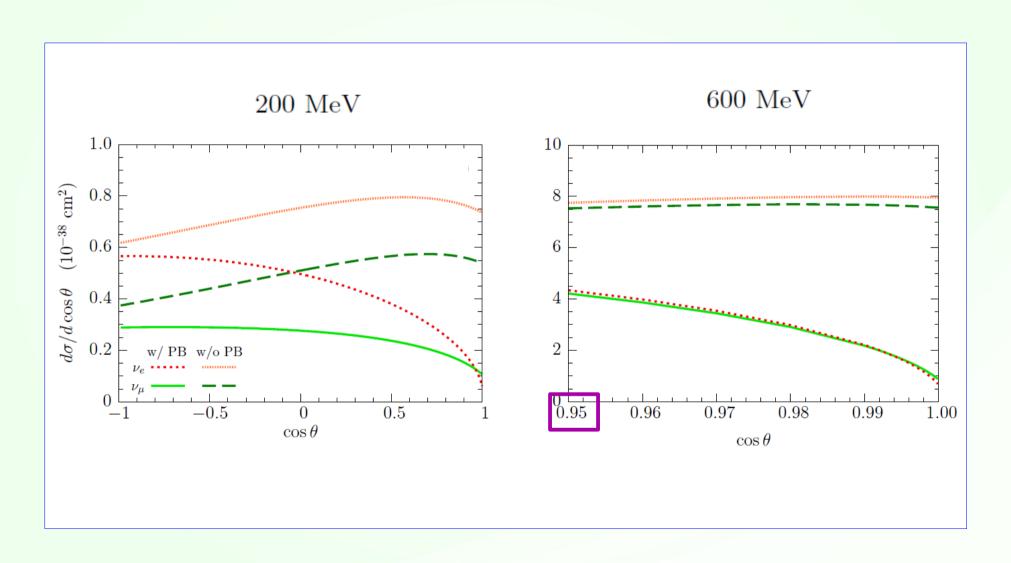


### **CCQE** scattering at 600 MeV





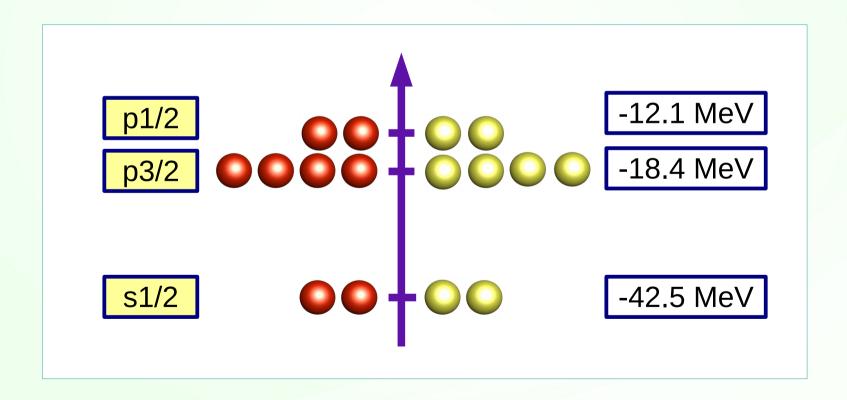




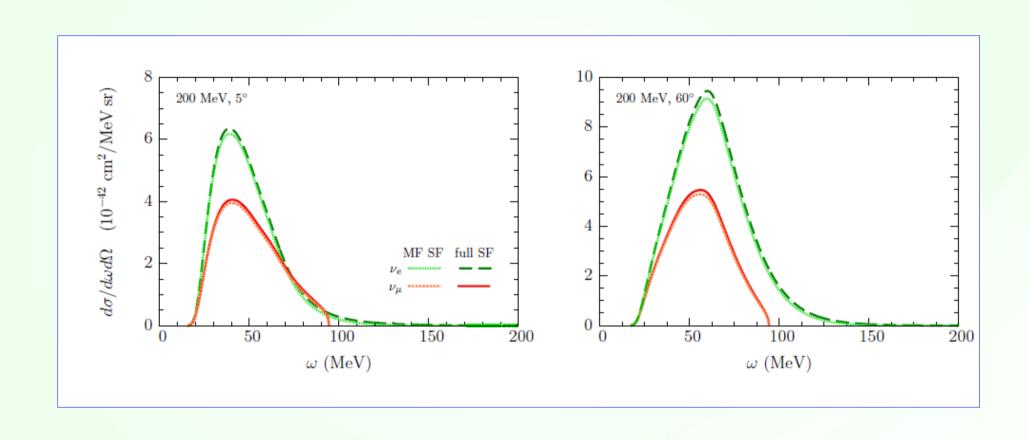
#### **Shell model**

In a spherically symmetric potential, the eigenstates correspond to definite values of the total angular momentum.

No correspondence between nucleon momentum and energy, unlike in the Fermi gas model.



### **CCQE** scattering at 200 MeV



#### **CCQE** scattering at 600 MeV

