

Hadron production overview Current and future projects

Matej Pavin, on behalf of NA61/SHINE and EMPHATIC collaborations

17.10.2018.

Outline

- Overview of the hadron production measurements used in neutrino flux simulations
- Why we need hadron production data?
- Hadron production experiments and results
- Future prospects

Motivation (I)

- Neutrinos in atmospheric and accelerator-based experiments are produced from pion, kaon and muon decays
- Pions, kaons, and muons are produced in hadronic interactions with the atmosphere or the target
- Beams used for neutrino flux production are at: J-PARC (30 GeV), NuMi (120 GeV) and Booster (8 GeV)
- Cosmic rays: up to 10²⁰ GeV

Motivation (II)

- Produced neutrino flux cannot be directly measured
 - we rely on simulations
 of hadronic interactions
- Large differences between models \rightarrow large uncertainty of the neutrino flux
- Hadron production data is necessary to select or tune the models
- Neutrino flux uncertainty is the dominant uncertainty in many neutrino measurements
- Single detector measurements are mostly affected (neutrino-nucleus cross-section measurements, sterile neutrino searches, measurement of CP violation in atmospheric neutrinos)

Hadron interactions for neutrino physicists

Hadron production measurements

Hadron production measurements can be used to tune models

Hadron production experiments

- Two measurements are needed: production cross section (probability of interaction) and particle multiplicities (number of produced hadrons)
- Only some of the experiments measuring both quantities will be mentioned in this talk (otherwise, the talk would be too long)
- For an extensive list of hadron production measurements check Phys. Rev. D 87, 012001 (2013)
- Old cross-section measurements
 - Results are often confusing → it is not clear which cross-section was measured (inelastic or production)

In this talk: HARP MIPP NA49 NA61/SHINE EMPHATIC

HARP (Hadron Production Experiment)

- CERN PS
- Beam momentum: 1.5-15 GeV/c
- Targets: A = 1-200
- p+A→ π[±] (3-12 GeV/c): Phys.Rev. C80 (2009)
 035208
- π[±]+A→ π[±] (3-12 GeV/c): Nucl.Phys. A821
 (2009) 118-192)
- p+N2, O2→ π[±] (12 GeV/c): Astropart.Phys. 30 (2008) 124-132)
- Low angle configuration 0-250 mrad
- High angle configuration 350 2150 mrad
- Systematics : 5% due to re-interactions

MIPP (The Main Injector Particle Production Experiment)

- Secondary beam from the Main Injector
- Targets: H, D, Be, C, N, Cu, Bi, U, NuMI
- Beam: π, K, p, beam momentum: 5 120 GeV/c (primary and secondary beam)
- p_t: 0-2 GeV/c
- p_z: 0-80 GeV/c

Phys.Rev. D90 (2014) 032001

NA49

- CERN SPS
- Main physics goal is not related to neutrino physics
- Beam: 158 GeV/c
- p+p, p+A, A+A collisions
- p+C measurements are useful for NuMI flux predictions
- Systematics: 3-8%

[mb/(GeV²/c³)]

10

10

 $pC \rightarrow \pi^{-}X$

 $x_{c} = 0.0$

 $x_{\rm F} = 0.05$

 $x_{e} = 0.15$

 $x_{r} = 0.2$

 $x_{e} = 0.25$

 $x_{r} = 0.3$

 $x_{\rm F} = 0.4$ $x_{\rm E} = 0.5$

 $x_{e} = 0.1$

 $pC \rightarrow \pi^* X$

 $x_{r} = 0.0$

 $x_{c} = 0.1$

 $x_{\rm F} = 0.05$

 $x_{r} = 0.15$

 $x_{\rm E} = 0.2$

 $x_{r} = 0.25$

 $x_{r} = 0.3$

 $x_{\rm c} = 0.4$

 $x_{r} = 0.5$

North Area 61 / SPS Heavy Ion and Neutrino Experiment NA61 / SHINE

• Precise hadron production measurements for neutrino flux re-weighting in T2K and Fermilab neutrino experiments

ONGOING

FINISHED

Capabilities of the NA61/SHINE detector

 m_{tof}^2 [GeV²/c⁴]

- Beam momentum between 13 and 160 AGeV/c
- Beam purity for hadrons is very high (at 31 GeV/c > 99.9%)
- Large acceptance (for T2K measurements 400 mrad)
- PID: dE/dx + tof

NA61/SHINE thin target measurements for T2K

- 2 cm thick graphite target and 30.92
 GeV/c proton beam
- Inelastic and production cross section
 + double differential hadron (π[±], K[±], K⁰_s, p, Λ) yields

Year	[10 ⁶] events	Results
2007	0.7	π [±] , K ⁺ , K ⁰ _s , Λ [1,2]
2009	5.4	$π^{\pm}$, K [±] , K ⁰ _s , p, Λ [3]

 $\sigma_{\rm prod} = (230.7 \pm 2.7(\text{stat}) \pm 1.2(\text{det})^{+6.3}_{-3.4}(\text{mod})) mb$

[1] Phys. Rev. C84, 034604 (2011). [3] Eur. Phys. J. C (2016) 76: 84 [2] Phys. Rev. C85, 035210 (2012).

NA61/SHINE thin target measurements for T2K

NA61/ SHINE replica target measurements for T2K

- Around 2 interaction lengths
- Interaction vertices are not reconstructed
 TPC tracks are extrapolated to the target surface
- Measurement of the production cross section is not necessary

Year	POT [10 ⁶]	Results
2007	0.2	proof of concept [1]
2009	4.0	π [±] yields [2]
2010	10.2	π [±] , K [±] , p yields [3]

N. Abgrall et al., Nucl. Instrum. Meth., A701:99, 2013.
 N. Abgrall et al. Eur. Phys. J., C76(11):617, 2016.

[3] N. Abgrall et al., arXiv:1808.04927 [hep-ex], submitted to EPJC

Replica target measurements for T2K (2010)

- Measurements are done as a function of momentum (p), polar angle (θ) and longitudinal position of the exit point on the target surface (z)
- 5 z bins (18 cm in size) + downstream target face
- p and θ bin size depend on the statistics

 percentage of neutrino flux produced from hadrons exiting the target covered by the replica target measurement

mode	π+ [%]	π ⁻ [%]	K⁺ [%]	K⁻ [%]	p [%]	Tot [%]
v	99.22	97.47	84.50	83.08	71.65	96.92
anti-v	97.03	98.89	72.56	89.61	69.66	96.62 ₁₆

T. Vladisavljevic, arXiv:1804.00272 [physics.ins-det]

T2K neutrino flux uncertainty

Please see Tomislav's talk!

Only π^{\pm} replica-target measurements from 2009 data were used

Measurements for Fermilab neutrino programme

- Data-taking 2012 2018
- Data-taking will finish in October
- NOvA replica target data taken this summer
- Most of the data is still being analyzed

	31 GeV/c				60 GeV/c			90 GeV/c				120 GeV/c				
	Ве	С	AI	NOvA	Ве	С	ΑΙ	NOvA	Ве	С	AI	NOvA	Ве	С	AI	NOvA
р																
π+																
π ⁻ Κ ⁺																
N		Data	tak	en with	ma	gne	ts o	ff	Da	ta ta	aker	ו with n	nagr	nets	on	

20

Measurements of total production cross sections

- NuMI beam uses 120 GeV/c protons
- Measurements at lower momenta are used to re-weight re-interactions

Phys.Rev. D98 (2018) no.5, 052001

Interactions below 15 GeV/c

- NA61/SHINE beam cannot go below 13 AGeV/c
- Why we need lower beam momentum?
 - Low momentum re-interactions are starting to be dominant contribution in the T2K flux uncertainty (π+Al, K+Al, ...) → the same limitations will apply to T2HK
 - Low-momentum re-interactions are also the dominant uncertainty in the NuMI and LBNF flux predictions
 - Sub-GeV sample in atmospheric neutrino oscillations is sensitive to CP violation → size of the effect is around 3-4% → atmospheric flux uncertainty is larger and comes from low energy pion production
- Low momentum beam is available at Fermilab Test Beam Facility
- Compact hadron production experiment (1m in size) can be designed to measure low momentum interactions → EMPHATIC

EMPHATIC

- Experiment to Measure the Production of Hadrons At a Testbeam In Chicagoland
- Fermilab Test Beam Facility (FTBF) → beam 2 120 GeV/c
- Complementary to NA61/SHINE
- Physics goals:
 - Measurement of untuned interactions in the T2K neutrino beam simulation
 - \circ Measurements for NuMI beam simulation
 - Hadron production measurements for atmospheric neutrinos
 - Cross-check of the NA61/SHINE production cross-section measurement

-p_b < 15 GeV/c

Targets and beam

- Graphite, aluminum, steel and empty targets
- Emulsion targets with graphite
- Beam momentum: 2, 10, 20, 30, 120 GeV/c
- Beam composition:
 - $p < 10 \text{ GeV/c} \rightarrow \text{fraction of } e^{\pm} > 50\%$
 - p = 30 GeV/c → fraction of p ~ 45%, K ~
 3%, π ~ 50%, e⁺ ~ 2%

What can we do with the data?

- p + C @ 20, 30, 120 GeV/c data
- Measurement of total, elastic and quasi-elastic cross section
- Momentum measurement is not necessary
- PID is not necessary

Detector performance

- 1. Proton beam is contaminated by kaons → Cherenkov selection
- 2. Alignment of the SiSDs → 7 detectors (14 planes)
 - \circ ~ 3.846 x 3.846 cm, pitch: 60 μm
- 3. SiSDs efficiency > 99%

Interactions outside of the target

- Pixel telescope → not used in the measurements (additional material in the beamline)
- Possible interactions in the last upstream and the first downstream SiSD
- Cut on x and y distances between upstream and downstream track at target z

Interactions outside of the target

RPC ToF counter Future EMPHATIC measurements 400mrad Aerogel RICH 300mrad Permanent 200mrad magnet 2 phases (aperture) Target Phase 1 (late 2019): - O O O Net p(π) + C, Al, Fe, @ 4, 8, 12, 20, 31 GeV/c 0 SSD 5, 10 and 20% $\lambda_{\rm I}$ C targets Ο 200mrad 300mrad First measurement of hadron yields (100k interactions for Ο 400mrad 5% λ_1 target \Rightarrow data-taking 3 hours) Beam aerogel Cherenkov Ο 100cm Magnet + TOF (resolution ~70 ps, PID up to 1.5 GeV/c) + Ο 400mrad Aerogel RICH (π id up to 8 GeV/c) 300mrad Calorimeter (lead glass) \rightarrow can identify electrons, muons Ο 200mrad and neutrons Phase 2 (2020/21): 000 p(π) + C, Al, Fe @ 4, 8, 12, 20, 31, 60, 120 GeV/c Ο Additional targets B, BN, B_2O_3 for atmospheric neutrinos Ο 200mrad DAQ upgrades Ο 300mrad 400mrad RICH upgrade up to 15 GeV/c Ο

Top view

Lead glass

calorimete

Side view

Future EMPHATIC measurements

- Cooperation with E50 collaboration from Japan
 - Multigap Resistive Plate Chambers (MRPCs) and aerogel RICH

- Magnet: small or large aperture?
 - Halbach array → 20 cm long with ~10 cm gap → field strength > 1T

N52 magnet \rightarrow internal field 1.44 T

Journal of Magnetic Resonance Vol. 277 (2017) 143

~49mm

Conclusion

- The modeling of hadron interactions limits knowledge of the atmospheric and accelerator-based neutrino fluxes
- Measurements are needed to reduce this uncertainty
- Many past experiments, but we need more
 - hadrons which produce neutrinos have a wide range of energies
- NA61/SHINE experiment at CERN, only experiment on the market which recently delivered measurements
 - Successful measurement for T2K and Fermilab experiments
- EMPHATIC → new experiment complementary to NA61/SHINE
 - Lower beam momentum
 - Measurements for atmospheric neutrinos
 - Measurements are planned for 2019 and 2020
- We are entering the era of precision neutrino physics → hadron production measurements will be even more important

Future prospects for hadron production experiments

- We need to rely on NA61/SHINE and EMPHATIC
- NA61/SHINE
 - very useful for replica target measurements and higher momentum (>15 GeV/c)
 - Probably another run with HK replica target will be necessary
 - More data for DUNE?
- EMPHATIC
 - Lower momentum measurements (< 15 GeV/c)
 - Very useful for atmospheric neutrinos

BACKUP

NA61/SHINE replica target π^+ uncertainties

NA61/SHINE replica target π^{-} uncertainties

NA61/SHINE replica target K⁺ uncertainties

NA61/SHINE replica target K⁻ uncertainties

NA61/SHINE replica target p uncertainties

4-momentum transfer (30 GeV/c data)

How to use this data

- σ_{prod} can be extracted from t distributions
- t distribution can be used to reduce the model dependence of the NA61/SHINE σ_{prod} measurement

NA61/SHINE production cross-section measurement

- NA61/SHINE trigger system has a veto scintillator which discards non-production events (2 cm in size, angular coverage ~2 mrad)
- Some of the elastic and quasi-elastic events are accepted, while some of the production events are removed → inefficiency is corrected with MC

$$\sigma_{prod} = (\sigma_{trig} - f_{el}\sigma_{el} - f_{qel}\sigma_{qel}) \frac{1}{f_{prod}}$$
Fraction of accepted elastic events
Fraction of accepted production events
Fraction of removed production events

-

NA61/SHINE production cross-section measurement

- Systematic uncertainty is calculated by comparing corrections produced by different MC models
- EMPHATIC measures t distribution at low t → p+C @ 30 GeV/c
 EMPHATIC data can be used to re-weight Monte Carlo prediction and estimate f_{el} and f_{qel} corrections in p+C at 31 GeV/c
 - $\sigma_{_{prod}}$ measurements

EMPHATIC - test beam in January 2018

q∙p [GeV/c]	Graphite	Aluminum	Steel	Empty
120	1.63M	0	0	1.21M
30	3.42M	0.98M	1.01M	2.56M
-30	0.31M	0.31M	0.13M	0.31M
20	1.76M	1.76M	1.71M	1.62M
10	1.18M	1.11M	0.97M	1.17M
2	0.11M	0.11M	0.18M	0.11M

RICH performance

