Hadron production overview Current and future projects

Matej Pavin, on behalf of NA61/SHINE and EMPHATIC collaborations

17. 10. 2018.

EMPHATIC

Outline

- Overview of the hadron production measurements used in neutrino flux simulations
- Why we need hadron production data?
- Hadron production experiments and results
- Future prospects

Motivation (I)

- Neutrinos in atmospheric and accelerator-based experiments are produced from pion, kaon and muon decays
- Pions, kaons, and muons are produced in hadronic interactions with the atmosphere or the target
- Beams used for neutrino flux production are at: J-PARC (30 GeV), NuMi (120 GeV) and Booster (8 GeV)
- Cosmic rays: up to $10^{20} \mathrm{GeV}$

Motivation (II)

- Produced neutrino flux cannot be directly measured \rightarrow we rely on simulations of hadronic interactions
- Large differences between models \rightarrow large uncertainty of the neutrino flux
- Hadron production data is necessary to select or tune the models
- Neutrino flux uncertainty is the dominant uncertainty in many neutrino measurements
- Single detector measurements are mostly affected (neutrino-nucleus cross-section measurements, sterile neutrino searches, measurement of CP violation in atmospheric neutrinos)

Hadron interactions for neutrino physicists

Coherent elastic

$$
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{el}}+\sigma_{\mathrm{qel}}+\sigma_{\mathrm{prod}}
$$ interactions (σ_{el})

$$
\sigma_{t o t}=\sigma_{\mathrm{el}}+\sigma_{\mathrm{inel}}
$$

Quasi-elastic interactions ($\sigma_{\text {qel }}$)

Inelastic
interactions $\left(\sigma_{\text {inel }}\right)$

Hadron production measurements

- Hadron production measurements can be used to tune models
(1) Thin target measurements

Useful for all experiments!
(2) Replica target measurements

Re-weight hadron yields on the target surface

Mostly useful for a single experiment Both approaches are necessary!

Hadron production experiments

- Two measurements are needed: production cross section (probability of interaction) and particle multiplicities (number of produced hadrons)
- Only some of the experiments measuring both quantities will be mentioned in this talk (otherwise, the talk would be too long)
- For an extensive list of hadron production measurements check Phys. Rev. D 87, 012001 (2013)

In this talk: HARP
 MIPP
 NA49
 NA61/SHINE EMPHATIC

- Old cross-section measurements
- Results are often confusing \rightarrow it is not clear which cross-section was measured (inelastic or production)

HARP (Hadron Production Experiment)

- CERN PS
- Beam momentum: 1.5-15 GeV/c
- Targets: $\mathrm{A}=1-200$
- $p+A \rightarrow \pi^{ \pm}$(3-12 GeV/c): Phys.Rev. C80 (2009) 035208
- $\pi^{ \pm}+A \rightarrow \pi^{ \pm}$(3-12 GeV/c): Nucl.Phys. A821 (2009) 118-192)
- $\mathrm{p}+\mathrm{N} 2,02 \rightarrow \boldsymbol{\pi}^{ \pm}(12 \mathrm{GeV} / \mathrm{c})$: Astropart.Phys. 30 (2008) 124-132)
- Low angle configuration 0-250 mrad
- High angle configuration 350-2150 mrad
- Systematics : 5\% due to re-interactions

MIPP (The Main Injector Particle Production Experiment)

- Secondary beam from the Main Injector
- Targets: H, D, Be, C, N, Cu, Bi, U, NuMI
- Beam: п, K, p, beam momentum: 5-120 GeV/c (primary and secondary beam)
- $p_{t}: 0-2 \mathrm{GeV} / \mathrm{c}$
- $\mathrm{p}_{\mathrm{z}}: 0-80 \mathrm{GeV} / \mathrm{c}$

NA49

- CERN SPS
- Main physics goal is not related to neutrino physics
- Beam: 158 GeV/c
- p+p, p+A, A+A collisions
- $p+C$ measurements are useful for NuMI flux predictions
- Systematics: 3-8\%
- $\mathrm{x}_{\mathrm{F}}:-0.1-0.5, \mathrm{p}_{\mathrm{t}}<1.8 \mathrm{GeV} / \mathrm{c}$

C. Alt et al., Eur.Phys.J. C49 (2007) 897-917

North Area 61 / SPS Heavy Ion and Neutrino Experiment NA61 / SHINE

*Setup used in hadron production measurements for neutrino experiments

- Precise hadron production measurements for neutrino flux re-weighting in T2K and Fermilab neutrino experiments

Capabilities of the NA61/SHINE detector

Beam momentum between 13 and 160 AGeV/c Beam purity for hadrons is very high (at 31 GeV/c > 99.9\%)
Large acceptance (for T2K measurements 400 mrad)
PID: dE/dx + tof

NA61/SHINE thin target measurements for T2K

- 2 cm thick graphite target and 30.92 $\mathrm{GeV} / \mathrm{c}$ proton beam
- Inelastic and production cross section + double differential hadron ($\boldsymbol{\pi}^{ \pm}, \mathbf{K}^{ \pm}$, $\mathbf{K}_{\mathrm{s}}^{\mathbf{0}}, \mathbf{p}, \boldsymbol{\Lambda}$) yields

Year	$\left[10^{6}\right]$ events	Results
2007	0.7	$\Pi^{ \pm}, \mathrm{K}^{+}, \mathrm{K}_{\mathrm{s}^{\prime}}^{0} \wedge[1,2]$
2009	5.4	$\pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{K}_{\mathrm{s}^{\prime}}, \mathrm{p}, \wedge[3]$

$$
\sigma_{\text {prod }}=\left(230.7 \pm 2.7(\text { stat }) \pm 1.2(\operatorname{det})_{-3.4}^{+6.3}(\bmod)\right) m b
$$

NA61/SHINE thin target measurements for T2K

Antineutrino mode

NA61/ SHINE replica target measurements for T2K

- Around 2 interaction lengths - Interaction vertices are not reconstructed \rightarrow TPC tracks are extrapolated to the target surface

Aluminum
flange
T2K replica target

Downstream support

- Measurement of the production cross section is not necessary

Year	POT $\left[10^{6}\right]$	Results
2007	0.2	proof of concept [1]
2009	4.0	$\Pi^{ \pm}$yields [2]
2010	10.2	$\Pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{p}$ yields [3]

[1] N. Abgrall et al., Nucl. Instrum. Meth., A701:99, 2013.
[3] N. Abgrall et al., arXiv:1808.04927 [hep-ex], submitted to EPJC
[2] N. Abgrall et al. Eur. Phys. J., C76(11):617, 2016.

Replica target measurements for T2K (2010)

- Measurements are done as a function of momentum (p), polar angle (θ) and longitudinal position of the exit point on the target surface (z)
- 5 z bins (18 cm in size) + downstream target face
- $\quad \mathrm{p}$ and θ bin size depend on the statistics

K^{+}yields ($0 \leq \theta<60 \mathrm{mrad}$)

\longrightarrow NA61/SHINE K ${ }^{+}$
—— NuBeam G4.10.03 QGSP_BERT G4.10.03

$\mathrm{p}[\mathrm{GeV} / \mathrm{c}]$

p yields (20 $\leq \theta<40 \mathrm{mrad})$

- NA61/SHINE p
- NuBeam G4.10.03 QGSP_BERT G4.10.03

T2K neutrino flux uncertainty

SK: Positive Focussing (v) Mode, v_{μ}

Please see Tomislav's talk!

Only $\pi^{ \pm}$replica-target measurements from
2009 data were used

Measurements for Fermilab neutrino programme

- Data-taking 2012-2018
- Data-taking will finish in October
- NOvA replica target data taken this summer
- Most of the data is still being analyzed

	$31 \mathrm{GeV} / \mathrm{c}$				$60 \mathrm{GeV} / \mathrm{c}$				$90 \mathrm{GeV} / \mathrm{c}$				$120 \mathrm{GeV} / \mathrm{c}$			
	Be	C	AI	NOvA												
p																
π^{+}																
$\pi{ }^{-}$																
		ata	tak	n with			S			ta	ken	with	magn	ets	on	

Measurements of total production cross sections

- NuMI beam uses $120 \mathrm{GeV} / \mathrm{c}$ protons
- Measurements at lower momenta are used to re-weight re-interactions

Phys.Rev. D98 (2018) no.5, 052001

Interactions below $15 \mathrm{GeV} / \mathrm{c}$

- NA61/SHINE beam cannot go below $13 \mathrm{AGeV} / \mathrm{c}$
- Why we need lower beam momentum?
- Low momentum re-interactions are starting to be dominant contribution in the T2K flux uncertainty $(\pi+A I, K+A I, \ldots) \rightarrow$ the same limitations will apply to T2HK
- Low-momentum re-interactions are also the dominant uncertainty in the NuMI and LBNF flux predictions
- Sub-GeV sample in atmospheric neutrino oscillations is sensitive to CP violation \rightarrow size of the effect is around $3-4 \% \rightarrow$ atmospheric flux uncertainty is larger and comes from low energy pion production
- Low momentum beam is available at Fermilab Test Beam Facility
- Compact hadron production experiment (1 m in size) can be designed to measure low momentum interactions \rightarrow EMPHATIC

EMPHATIC

- Experiment to Measure the Production of Hadrons At a Testbeam In Chicagoland
- Fermilab Test Beam Facility (FTBF) \rightarrow beam 2-120 GeV/c
- Complementary to NA61/SHINE
- Physics goals:
- Measurement of untuned interactions in the T2K neutrino beam simulation
- Measurements for NuMI beam simulation
- Hadron production measurements for atmospheric neutrinos
$\mathrm{p}_{\mathrm{b}}<15 \mathrm{GeV} / \mathrm{c}$」
- Cross-check of the NA61/SHINE production cross-section measurement

EMPHATIC data-taking in January 2018
Silicon Strip Detectors

Aerogel Cherenkov Detectors

Upstream

 Cherenkov Cherenkov

Targets and beam

Graphite, aluminum, steel and empty targets Emulsion targets with graphite Beam momentum: 2, 10, 20, 30, $120 \mathrm{GeV} / \mathrm{c}$ Beam composition:
○ $p<10 \mathrm{GeV} / \mathrm{c} \rightarrow$ fraction of $\mathrm{e}^{ \pm}>50 \%$

- $p=30 \mathrm{GeV} / \mathrm{c} \rightarrow$ fraction of $\mathrm{p}^{\sim} \mathbf{4 5 \%}, \mathrm{K}^{\text {~ }}$

$3 \%, \pi^{\sim} 50 \%, e^{+} \sim 2 \%$

What can we do with the data?

- p + C @ 20, 30, $120 \mathrm{GeV} / \mathrm{c}$ data
- Measurement of total, elastic and quasi-elastic cross section
- Momentum measurement is not necessary
- PID is not necessary

Detector performance

1. Proton beam is contaminated by kaons \rightarrow Cherenkov selection
2. Alignment of the $\mathrm{SiSDs} \rightarrow 7$ detectors (14 planes)

- $3.846 \times 3.846 \mathrm{~cm}$, pitch: $60 \mu \mathrm{~m}$

3. SiSDs efficiency > 99\%

Interactions outside of the target

- Pixel telescope \rightarrow not used in the measurements (additional material in the beamline)
- Possible interactions in the last upstream and the first downstream SiSD
- Cut on x and y distances between upstream and downstream track at target z

Interactions outside of the target

Raw t-distributions

Monte Carlo shows
similar difference

$p+C$ EMPHATIC data

- Distributions overlap \rightarrow cross-section is slowly changing or nearly constant with momentum
- Differences for $120 \mathrm{GeV} / \mathrm{c}$ data come from worse t resolution

Future EMPHATIC measurements

- 2 phases
- Phase 1 (late 2019):
- \quad (п) + C, AI, Fe, @ 4, 8, 12, 20, $31 \mathrm{GeV} / \mathrm{c}$
- 5, 10 and $20 \% \lambda_{1} C$ targets
- First measurement of hadron yields (100k interactions for $5 \% \lambda_{1}$ target \rightarrow data-taking 3 hours)

RPC ToF
counter

- Beam aerogel Cherenkov
- Magnet + TOF (resolution ~70 ps, PID up to $1.5 \mathrm{GeV} / \mathrm{c}$) + Aerogel RICH (π id up to $8 \mathrm{GeV} / \mathrm{c}$)
- Calorimeter (lead glass) \rightarrow can identify electrons, muons and neutrons
- \quad Phase 2 (2020/21):
- $\quad \mathrm{p}(\pi)+\mathrm{C}, \mathrm{Al}, \mathrm{Fe} @ 4,8,12,20,31,60,120 \mathrm{GeV} / \mathrm{c}$
- Additional targets $\mathrm{B}, \mathrm{BN}, \mathrm{B}_{2} \mathrm{O}_{3}$ for atmospheric neutrinos
- DAQ upgrades
- RICH upgrade up to $15 \mathrm{GeV} / \mathrm{c}$

Future EMPHATIC measurements

- Cooperation with E50 collaboration from Japan
- Multigap Resistive Plate Chambers (MRPCs) and aerogel RICH

Aerogels

Multi-anode PMT

Journal of Magnetic Resonance Vol. 277 (2017) 143

24 blocks

Conclusion

- The modeling of hadron interactions limits knowledge of the atmospheric and accelerator-based neutrino fluxes
- Measurements are needed to reduce this uncertainty
- Many past experiments, but we need more
- hadrons which produce neutrinos have a wide range of energies
- NA61/SHINE experiment at CERN, only experiment on the market which recently delivered measurements
- Successful measurement for T2K and Fermilab experiments
- EMPHATIC \rightarrow new experiment complementary to NA61/SHINE
- Lower beam momentum
- Measurements for atmospheric neutrinos
- Measurements are planned for 2019 and 2020
- We are entering the era of precision neutrino physics \rightarrow hadron production measurements will be even more important

Future prospects for hadron production experiments

- We need to rely on NA61/SHINE and EMPHATIC
- NA61/SHINE
- very useful for replica target measurements and higher momentum (>15 GeV/c)
- Probably another run with HK replica target will be necessary
- More data for DUNE?
- EMPHATIC
- Lower momentum measurements (< $15 \mathrm{GeV} / \mathrm{c}$)
- Very useful for atmospheric neutrinos

BACKUP

Π^{+}yields $(60 \leq \theta<80 \mathrm{mrad})$

. NA61/SHINE π^{+}

- NuBeam G4.10.03 QGSP_BERT G4.10.03

π^{-}yields $(60 \leq \theta<80 \mathrm{mrad})$

$\longrightarrow \quad$ NA61/SHINE π^{-}
_- NuBeam G4.10.03 QGSP_BERT G4.10.03

K^{-}yields $(0 \leq \theta<60 \mathrm{mrad})$

NA61/SHINE replica target π^{+}uncertainties

NA61/SHINE replica target π^{-}uncertainties

NA61/SHINE replica target K^{+}uncertainties

NA61/SHINE replica target K- uncertainties

NA61/SHINE replica target p uncertainties

4-momentum transfer (30 GeV/c data)

How to use this data

$\sigma_{\text {prod }}$ can be extracted from t distributions

- t distribution can be used to reduce the model dependence of the NA61/SHINE $\sigma_{\text {prod }}$ measurement

NA61/SHINE production cross-section measurement

- NA61/SHINE trigger system has a veto scintillator which discards non-production events (2 cm in size, angular coverage ${ }^{\sim} 2 \mathrm{mrad}$)
- Some of the elastic and quasi-elastic events are accepted, while some of the production events are removed \rightarrow inefficiency is corrected with MC

Fraction of removed production events

NA61/SHINE production cross-section measurement

- Systematic uncertainty is calculated by comparing corrections produced by different MC models
- EMPHATIC measures t distribution at low $t \rightarrow p+C$ @ $30 \mathrm{GeV} / \mathrm{c}$ EMPHATIC data can be used to re-weight Monte Carlo prediction and estimate $f_{\text {el }}$ and $f_{\text {qel }}$ corrections in $\mathrm{p}+\mathrm{C}$ at $31 \mathrm{GeV} / \mathrm{c}$ $\sigma_{\text {prod }}$ measurements

FTFP_BERT G4.10.04

FTFP_BERT G4.10.04

EMPHATIC - test beam in January 2018

$q \cdot p[\mathrm{GeV} / \mathrm{c}]$	Graphite	Aluminum	Steel	Empty
120	1.63 M	0	0	1.21 M
30	3.42 M	0.98 M	1.01 M	2.56 M
-30	0.31 M	0.31 M	0.13 M	0.31 M
20	1.76 M	1.76 M	1.71 M	1.62 M
10	1.18 M	1.11 M	0.97 M	1.17 M
2	0.11 M	0.11 M	0.18 M	0.11 M

RICH performance

