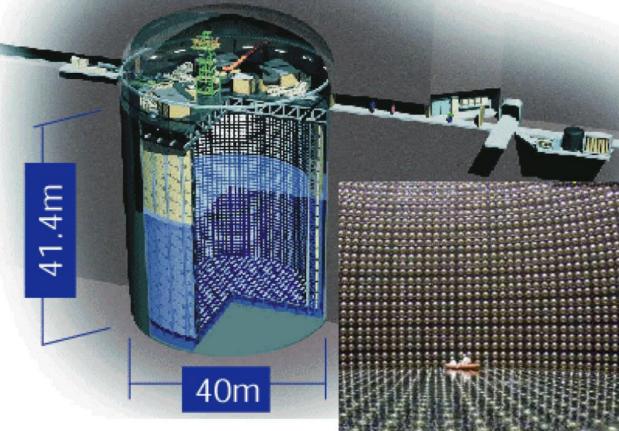
Detection of Supernova Neutrino at Super Kamiokande

NuInt 18 –12th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region

Gran Sasso Science Institute (GSSI)

18th of Oct., 2018



Atsushi Takeda (Kamioka ICRR, U. of Tokyo)

for the Super-Kamiokande collaboration

Super-Kamiokande (SK) detector

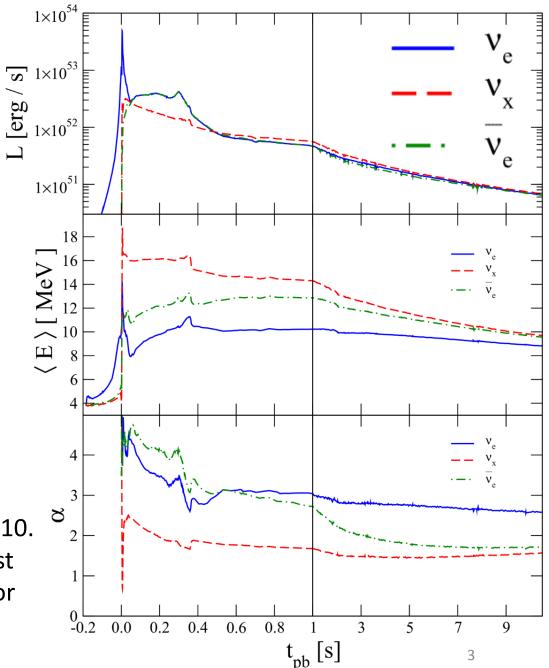
Many physics targets:

- Neutrino oscillation: atmospheric v, solar v, T2K beam
- Nucleon decay

• Astrophysics: Supernova Relic Neutrino, Supernova burst,

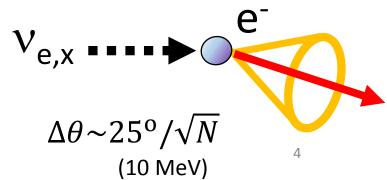
WIMP search, monopole search, etc.

- The world largest pure water Cherenkov detector located in Kamioka mine (36° 25' N, 137° 18' E).
- 50 kton pure water (22.5 kton fiducial, 2m from the walls of the inner detector)
- 1,000 m (2,700 m w.e.) underground
- 11,129 20-inch PMTs in inner detector (ID)
- 1,885 8-inch PMTs in outer detector (OD)
- ~ 4.0 MeV energy (total) threshold
- SK-I: April 1996~
- SK-IV: ~ May 2018.
- Current: refurbishment for SK-Gd.



Neutrinos from core collapse supernovae

- Gravitational energy is released: $\sim 3 \times 10^{53}$ erg.
- Almost all (99%) of the energy is carried by neutrinos.
- Energy for explosion and optical emission is only ~1%.


Time variation of luminosity, mean energy, and pinch \rightarrow parameter (α)

- This figure is taken from S. Horiuchi and J. Kneller, arXiv: 1709.01515v2
- Fischer et al., Astron. and Astrophys., 517, p. A80, Jul. 2010.
- Sharp peak in v_e around $t_{pb} = 0$ is the neutronization burst through $e^-+p \rightarrow v_e^-+n$ from propagation of shock wave prior to the core explosion.
- Well-known hierarchy $\langle E_{ve} \rangle \langle \langle E_{\overline{ve}} \rangle \rangle$ is seen.

Main interactions for supernova ν in SK (SK-Gd) • Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$ • Dominant in water Cherenkov detector owing to lots of free proton. • v energy is obtained from the e^+ energy. $E_e \sim E_v - (m_n - m_p) \sim E_v - 1.3 \text{ MeV}, E_v > 1.86 \text{ MeV}$ Neutron tagging using delayed coincidence. $n + p \rightarrow d + \gamma$ (2.2 MeV), (n + Gd \rightarrow Gd + γ (total ~8 MeV) if Gd is loaded) • Elastic scattering $\nu_{e,x} + e^- \rightarrow \nu_{e,x} + e^-$ All neutrinos are sensitive. $v_{e,x}$ The cross section for v_{e} is larger than others because of CC effect.

- Good directionality.
- Only recoil electron energy is measurable (not v energy).

Detection of supernova v at SK

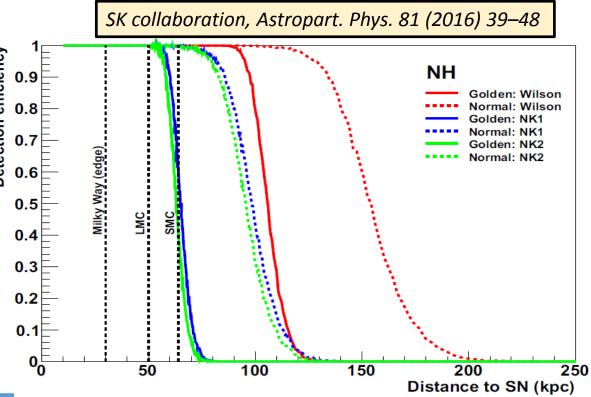
~320

~110

v + e-

¹⁶**O CC**

~170

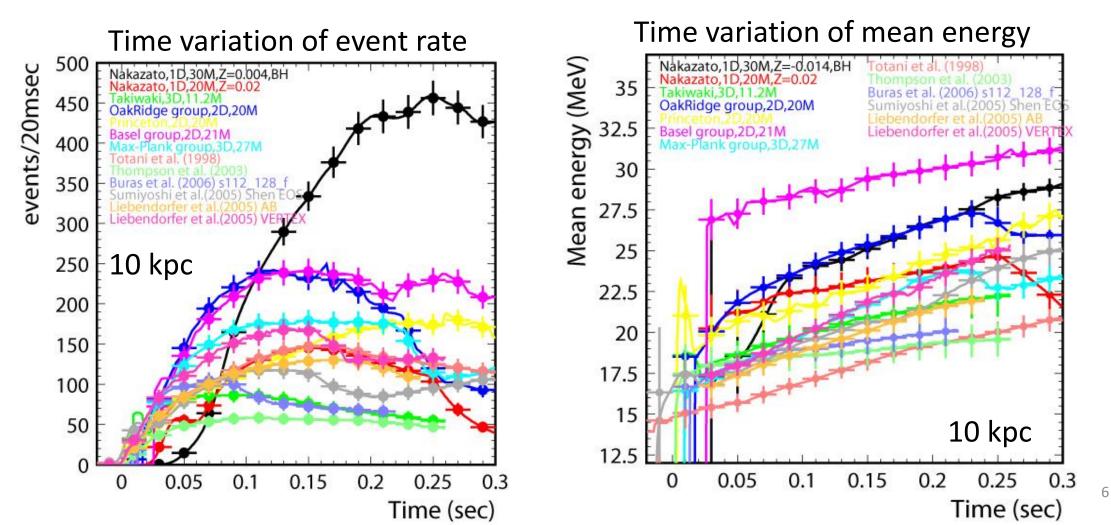

~57

32 kton SK volume

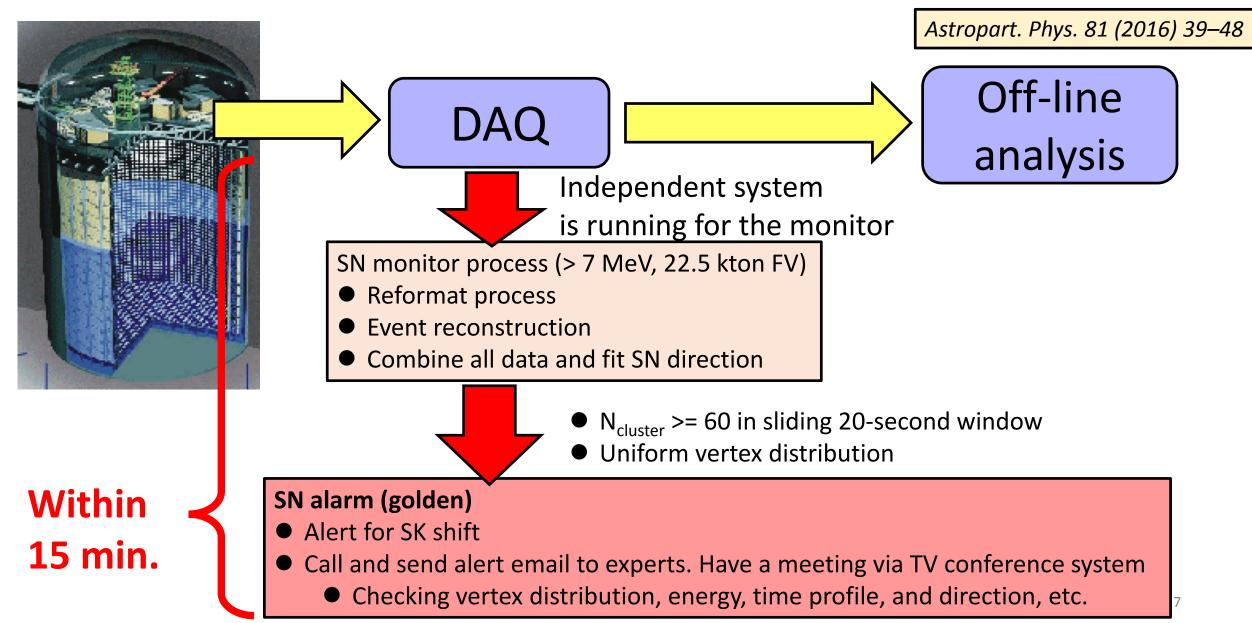
E_{th}: 4.5 MeV (kin)

No oscillation

 \checkmark Detection efficiency of the real time SN monitor. 100% efficiency for our galaxy and LMC for various models.

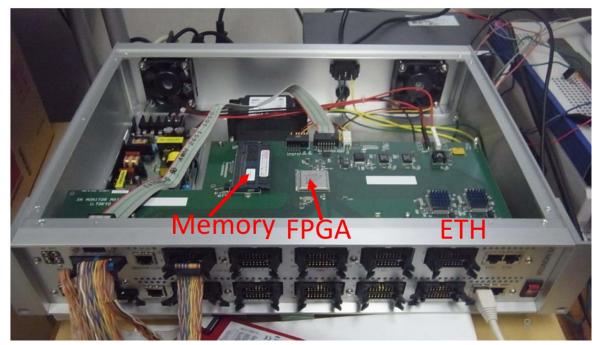


Wilson model : T. Totani, et al., Astrophys. J. 496 (1998) 216.

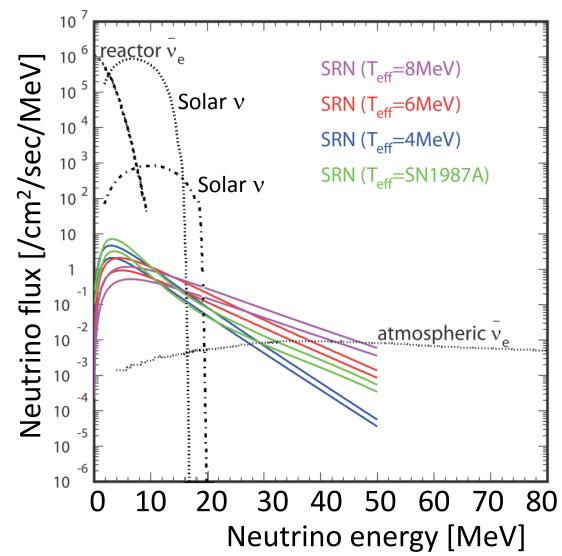

- Nakazato (NK) model : K. Nakazato, et al., Astrophys. J. Suppl. 205 (2013) 2.
 - NK1: M = 20 solar mass, t_{revive} = 200 ms, Z = 0.02
 - NK2: M = 13 solar mass, t_{revive} = 100 ms, Z = 0.004 (M: progenitor mass, t_{revive}: shock revival time, Z: metallicity)

Time variation measurement by \overline{v}_{e} +p

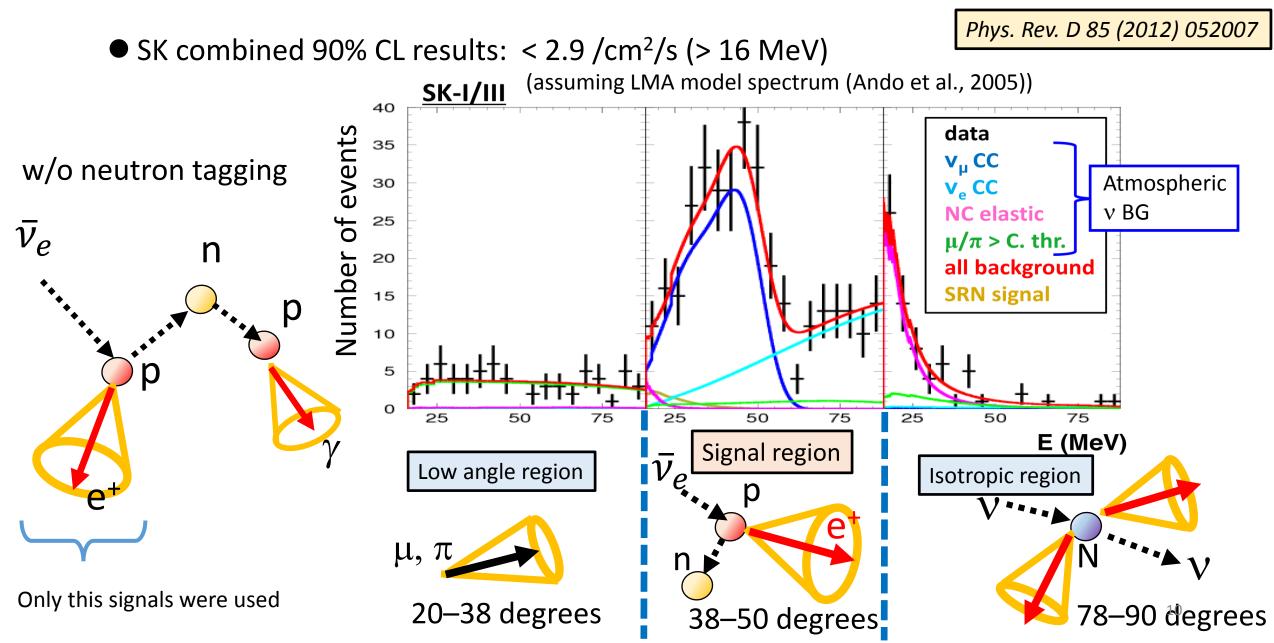
- $\overline{v}_e p \rightarrow e^+ n$ events give direct energy information ($E_e = E_v 1.3$ MeV)
- Enough statistics can be obtained to discriminate model predictions


Real-time supernova burst monitor at SK

Electronics for very close SN


- Expected event rate is > 10⁷ events / 10 sec in case of very close SN (ex. Betelgeus: 0.2 kpc)
- Dedicated electronics for very close SN was developed.
 - Save only number of hits every 16 ns.
 - \rightarrow energy x flux
 - No dead time.
 - Stable operation was confirmed.

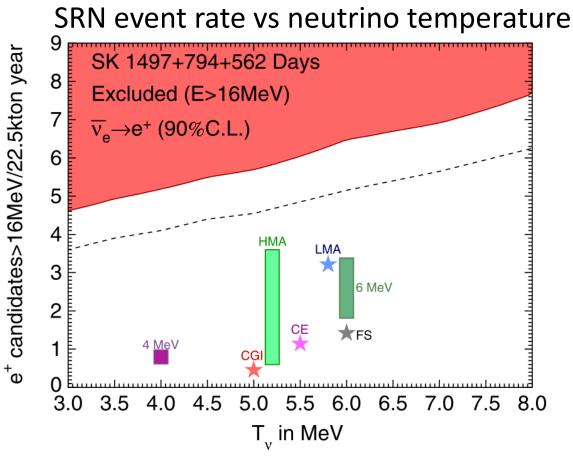
Super-Kamiokande is ready also for very close supernova.


Supernova Relic Neutrinos

- Since 1996, no burst was detected at Super-Kamiokande. It is estimated a supernova will occur a few times per century in a galaxy.
- However, all of the core collapse supernovae have released neutrinos throughout the history of the Universe.
 - → Supernova relic neutrinos (SRN) or diffuse supernova neutrino background (DSNB).
- There is signal window (~16–30 MeV) corresponding to the gap between the spectrum of solar and atmospheric neutrinos.
- Understanding and reduction of background events is very important.

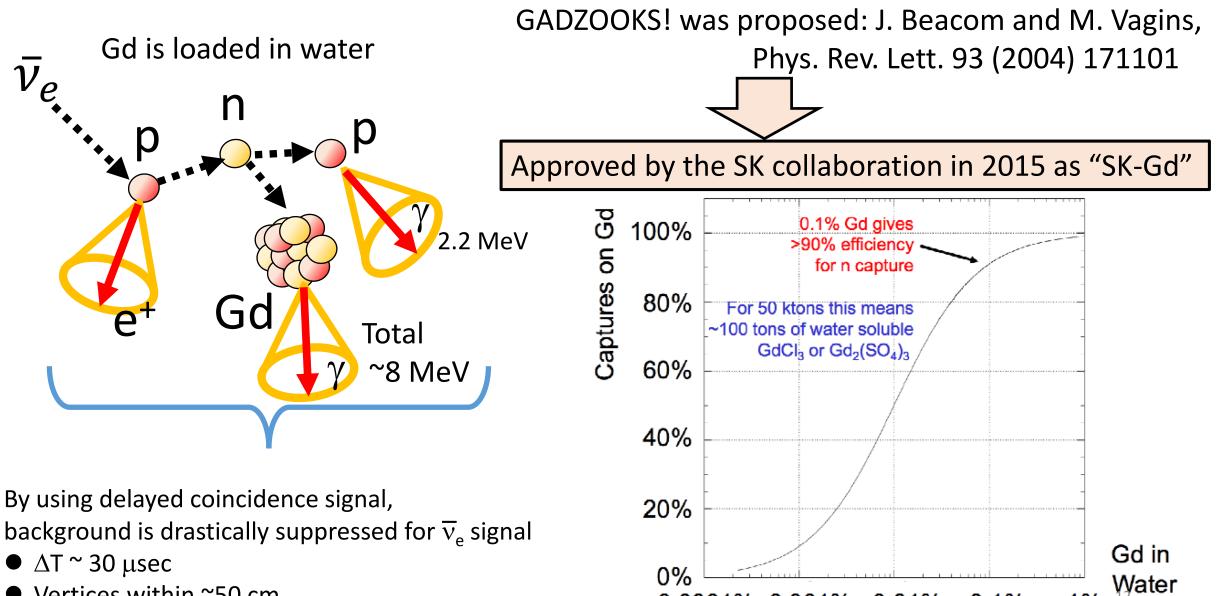
SRN flux from Horiuchi et al., PRD, 79 (2009) 083013 9

Supernova Relic Neutrino search at SK


Upper limit from SK

Phys. Rev. D 85 (2012) 052007

Limit is very close to the best theoretical predictions.

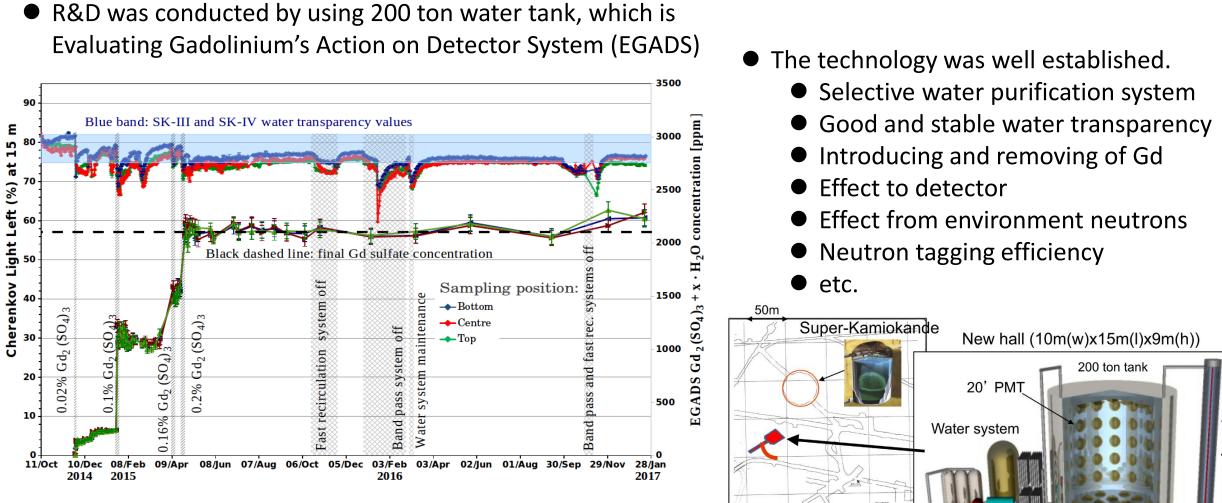

SK 1497+794+562 Days 3 Excluded (E>16MeV) SN \overline{v}_{e} Energy in 10⁵³erg $\overline{v}_{o} \rightarrow e^{+} (90\% \text{C.L.})$ 2 IMB Kamioka 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 T_. in MeV

Luminosity vs neutrino temperature

CGI: cosmic gas infall model, HMA: heavy metal abundance model
 CE: chemical evolution model, LMA: large mixing angle model,
 FS: failed supernova model

SK upgrade for supernova relic neutrino

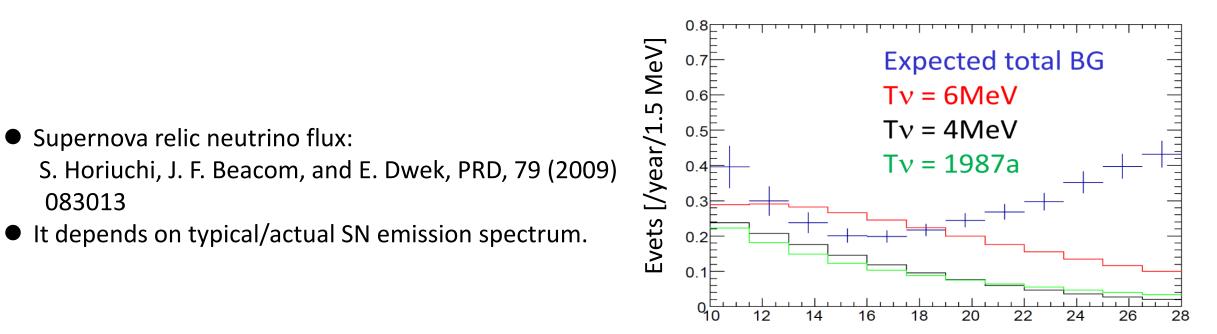
0.0001% 0.001%


0.01%

1%

0.1%

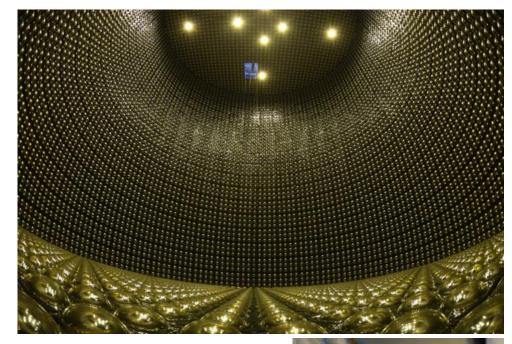
Vertices within ~50 cm


R&D for water + Gd technology

→ The light left at 15 m has been stable at ~75% for 0.2% $Gd_2(SO_4)_3$ Corresponding to ~92% of SK-IV average.

 \rightarrow >99.99% of Gd remains after water circulation for more than 350 times.

Physics expectation in SK-Gd


 \downarrow Expected # of signals and backgrounds through SK-Gd 10 years observation

HBD model	10–16 MeV	16–28 MeV	Total	significance
T _{eff} = 8 MeV	11.3	19.9	31.2	5.3 σ
T _{eff} = 6 MeV	11.3	13.5	24.8	4.3 σ
T _{eff} = 4 MeV	7.7	4.8	12.5	2.5 σ
T _{eff} = SN1987A	5.1	6.8	11.9	2.1 σ
BG	10	24	34	-

Total (e⁺) energy [MeV]

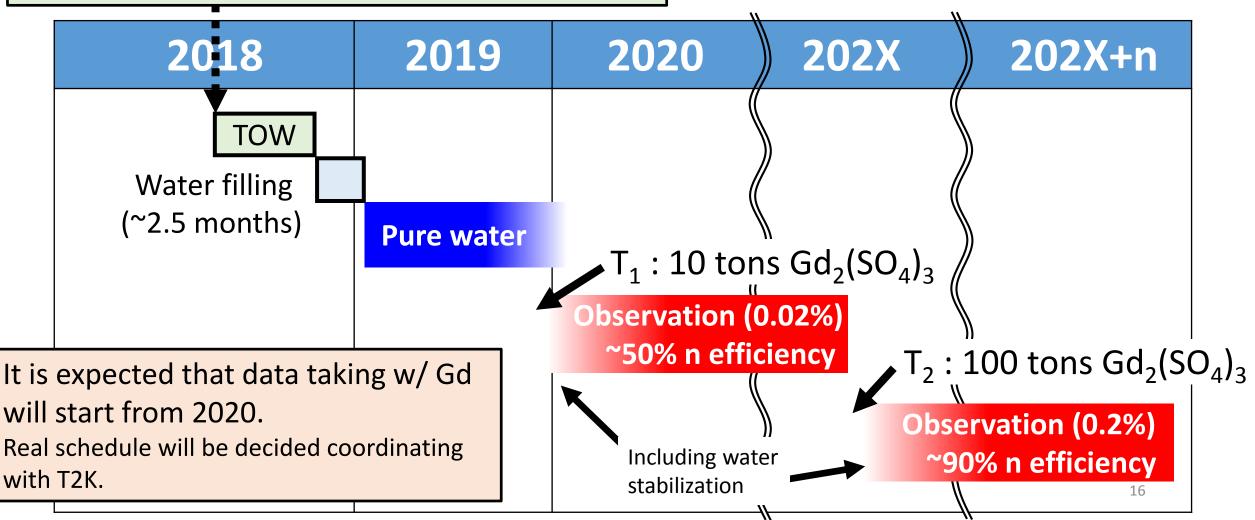
For realization of SK-Gd

The tank refurbishment work started on 31st of May 2018 for realization of SK-Gd.

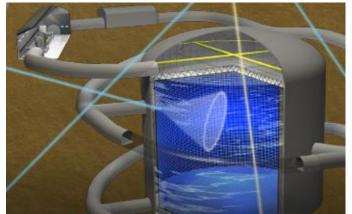
• Stopping the leakage

- The SK water tank has a small leak which is estimated to be ~1 ton/day.
- Before loading of Gd, the leakage has to be fixed from the view point of environmental safety.

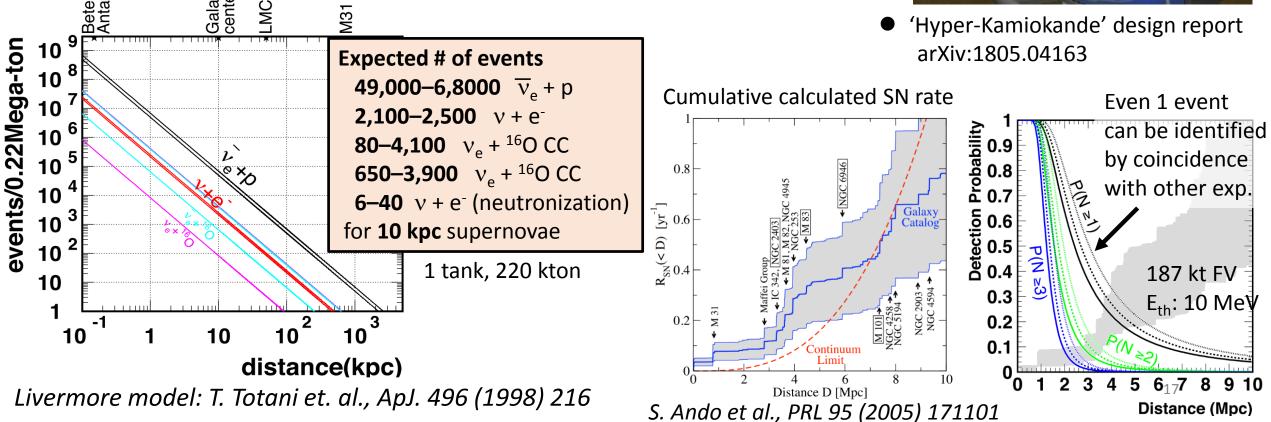
• Upgrade of the water piping in the tank


- The water piping is also improved for achievement a uniform Gd concentration inside the tank and keeping a good water transparency.
- Flow rate will be increased from 60 to 120 ton/h.

A planned time line toward SK-Gd


31st of May, 2018

Tank open work (TOW) for refurbishment started

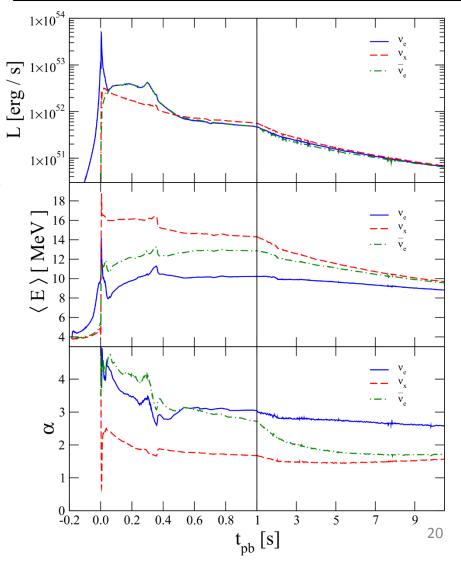


Supernova search at Hyper-Kamiokande

- The University of Tokyo pledges to ensure construction of the Hyper-Kamiokande detector commences as scheduled in Apr. 2020.
- Construction will be completed in 2026.
- There is sensitivity for supernova nearby galaxies.

'Hyper-Kamiokande' design report arXiv:1805.04163

Summary


- Super-Kamiokande has been ready for supernova for ~20 years.
 - If supernova happens in near G.C., ~8000 events will be detected and important information to understand the supernova mechanism will be obtained.
 - Limits for supernova relic neutrino are very close to theoretical prediction.
- Super-Kamiokande upgrade for supernova relic neutrino (SK-Gd)
 - The tank refurbishment work for SK-Gd is being conducted.
 - Data taking with Gd (0.02% of $Gd_2(SO_4)_3$) is expected to start from 2020.
- Hyper-Kamiokande has potential to detect supernova nearby galaxy.

Backup

Luminosity, mean energy and pinch parameter

- This figure is taken from S. Horiuchi and J. Kneller, arXiv: 1709.01515v2
- Results are from T. Fischer et al., Astron. And Astrophys., vol. 517, p. A80, Jul, 2010
- Progenitor: 10.8 solar mass.
- t_{pb}: postbounce time.
- Pinch parameter (a): spectral deviation from Fermi-Dirac distribution.
- The accretion phase lasts until t_{pb} ≈ 0.3 sec, and the shock is revived.
- Because multi-dimensional simulations are computationally expensive, there are few works extend beyond t_{pb} > 1 sec.
 Most of our theoretical understanding of the neutrino emission during the cooling phase comes from 1-dimensional simulations.

Figure is taken from S. Horiuchi and J. Kneller, arXiv:1709.01515v2

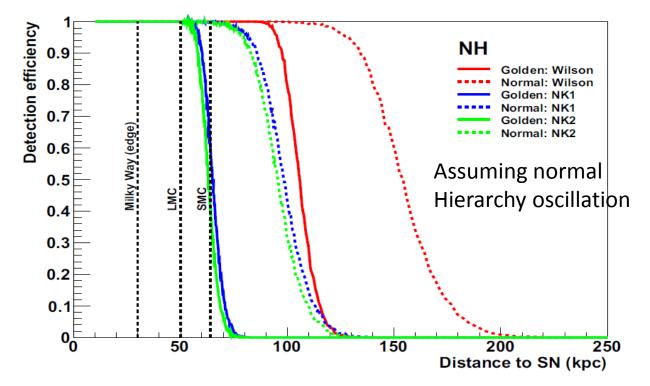
of expected events at SK

SK collaboration, Astropart. Phys. 81 (2016) 39–48

Table 1: Numbers of expected events at SK in the 22.5-kton fiducial volume with the 7 MeV total energy threshold for a SN burst with a distance of 10 kpc. We estimated these numbers using SK MC: we generate 3,000 ensembles of the MC samples, reconstructed the events with the SK standard reconstruction tool, applied the selection criteria, and then calculated the average numbers.

	Wilson		NK1		NK2				
	no osc.	NH	IH	no osc.	NH	IH	no osc.	NH	IH
$\overline{\bar{\nu}_e + p \to e^+ + n}$	4923	5667	7587	2076	2399	2745	1878	2252	2652
$v_e + e^- \rightarrow v_e + e^-$	74	130	114	43	56	56	39	54	54
$\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$	25	29	37	10	12	14	9	11	13
$v_x + e^- \rightarrow v_x + e^-$	41	33	34	17	19	18	17	17	17
$\bar{v}_x + e^- \rightarrow \bar{v}_x + e^-$	34	33	29	14	14	14	13	13	14
$\nu_e + {}^{16}\text{O} \rightarrow e^- + X$	8	662	479	22	78	74	16	72	68
$\bar{\nu}_e + {}^{16}\mathrm{O} \rightarrow e^+ + X$	64	196	531	27	48	70	20	41	64
total	5169	6750	8811	2209	2626	2991	1992	2460	2882

- Wilson model : T. Totani, et al., Astrophys. J. 496 (1998) 216.
- Nakazato (NK) model : K. Nakazato, et al., Astrophys. J. Suppl. 205 (2013) 2.
 - NK1: M = 20 solar mass, t_{revive} = 200 ms, Z = 0.02
 - NK2: M = 13 solar mass, t_{revive} = 100 ms, Z = 0.004

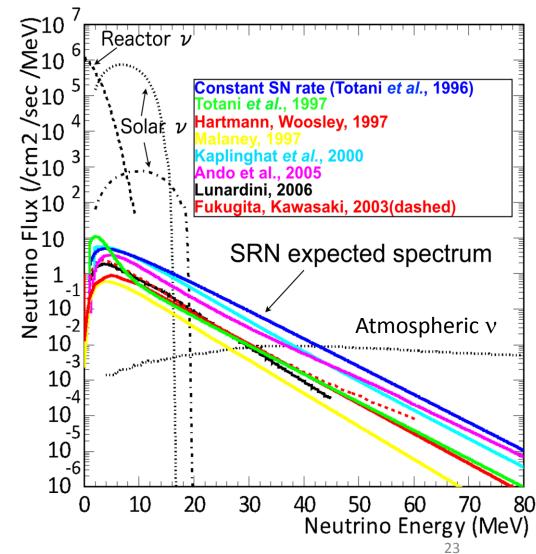

(M: progenitor mass, t_{revive}: shock revival time, Z: metallicity)

The difference between w/ and w/o osc. is mainly coming from difference of ne energy spectra. The average energy of v_e is smaller than that of v_x when those neutrinos are emitted from the neutrino-sphere.

Through neutrino osc. v_x are converted to v_e and therefore the average energy of v_e at SK increases.

Detection efficiency of the real time SN monitor

↓ Detection efficiency of the real time SN monitor. 100% efficiency for our galaxy and LMC for various models.


SK collaboration, Astropart. Phys. 81 (2016) 39–48

- Condition
 - Golden: # of events >= 60 in 20 sec. and volume like (D=3)
 - \rightarrow SNEWS, ATEL, GCN, IAU-CBAT
 - Normal: 60 > # of events >= 25 in 20 sec and volume like (D=3)
 - → sent alert to expert. Expert check the events.

- Wilson model : T. Totani, et al., Astrophys. J. 496 (1998) 216.
- Nakazato (NK) model : K. Nakazato, et al., Astrophys. J. Suppl. 205 (2013) 2.
 - NK1: M = 20 solar mass, t_{revive} = 200 ms, Z = 0.02
 - NK2: M = 13 solar mass, t_{revive} = 100 ms, Z = 0.004 (M: progenitor mass, t_{revive}: shock revival time, Z: metallicity)

Supernova Relic Neutrinos

- Constant SN rate model: Totani, Sato, and Yoshii, Astrophys. J. 460 (1996) 303.
 Cosmic gas infall model: Malaney, Astropart. Phys. 7 (1997) 125.
 Chemical evolution model: D. H. Hartmann and S. E. Woosley, Astropart. Phys. 7 (1997) 137.
 Heavy metal abundance model: M. Kaplinghat, G. Steigman, and T. P. Walker, Phys. Rev. D 62 (2000) 043001
 Large mixing angle (LMA) : Ando, Sato, and Totani, Astropart. Phys. 18 (2003) 307. The flux of the LMA model is increased by a factor of 2.56 at NNN05.
- Failed supernova model: Lunardini, Phys. Rev. Let. 102 (2009) 231101

Supernova relic neutrino search at super-Kamiokande

- 2853 live days
- 2.8–3.1 v_e cm⁻² s⁻¹ > 16 MeV total positron energy (17.3 MeV E_v)
- Improved from 2013 result
 - Increasing of efficiency : up to ~75%
 - Lower energy threshold : down to 16 MeV
 - Considering additional BG: NC elastic, μ/π production
 - Larger statistic
- Data reduction
 - Noise cut
 - Fiducial volume cut (22.5 ktons)
 - Spallation cut
 - Solar angle cut
 - Incoming event cut
 - Decay electron cut
 - Pion cut
 - Cherenkov angle (38 < signal < 50 degrees)
 - Others:
- BG sources
 - (1) Atmospheric v_{μ} CC events
 - (2) v_e CC events
 - (3) Atmospheric v neutral current (NC) elastic events
 - (4) μ/π production from atmospheric v

K. Bays et al., Physical Rev. D 85 (2012) 052007

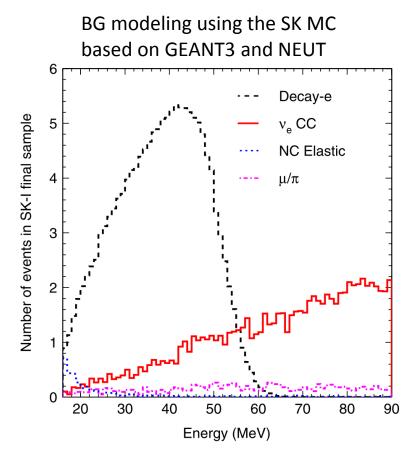


FIG. 11 (color online). Spectra of the four remaining backgrounds in the signal Cherenkov angle region with all reduction cuts applied. The ν_{μ} CC channel is from decay electron data; the other three are from MC. All are scaled to the SK-I LMA₂best fit result.

Supernova relic neutrino search at super-Kamiokande

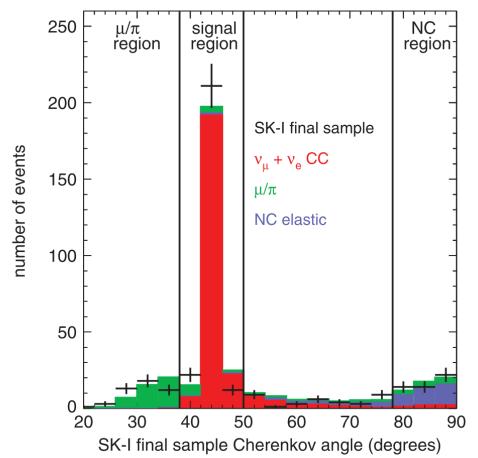


FIG. 12 (color). Cherenkov angle of SK-I combined final data (all cuts except Cherenkov angle cut applied) overlaid with distributions of the four remaining backgrounds from SK-I MC (same cuts applied). The division of Cherenkov angle regions is also pictured.

K. Bays et al., Physical Rev. D 85 (2012) 052007

← Cherenkov angle distribution of 4 remaining backgrounds.

Remaining background consist of 4 categories: (all are originated from atmospheric v) (1) v_{μ} CC : invisible μ + decay electron (2) v_{e} CC : (3) NC elastic (4) μ/p

(1) and (2) have similar Cherenkov angle (around 42 degrees) as SRN signal.

(4) has smaller Cherenkov angle because of lower speed.

(3) generates multiple γ 's which is reconstructed isotropic (higher angle) from single ring algorithm.

Background events of SRN

K. Bays et al., Physical Rev. D 85 (2012) 052007

Decay electron T < 50 MeV from atmospheric v_{μ} Cherenkov angle "Invisible muon" is same (~42 degrees) as SRN signal • v_e CC √e from atmospheric v_{e} Multiple γ 's give larger Cherenkov angle under • NC elastic $V_{\mathbf{X}}$ single ring reconstruction algorithm from atmospheric vCherenkov T > 200 MeV angle is • μ/π lower than from atmospheric vthat of SRN Signal. 26 "visible short muon track"

Supernova relic neutrino search at super-Kamiokande

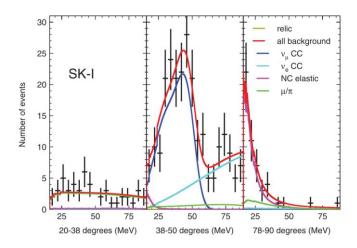


FIG. 14 (color). SK-I LMA best fit result. The relic best fit is negative, so a relic fit of 0 is shown.

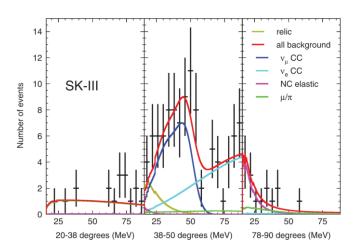


FIG. 16 (color). SK-III LMA best fit result. The relic best fit is 6.9 events per year interacting in the detector (before reduction efficiencies).

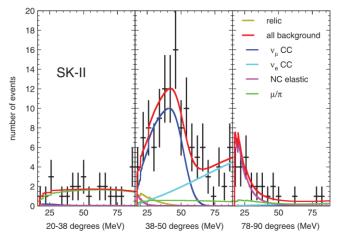
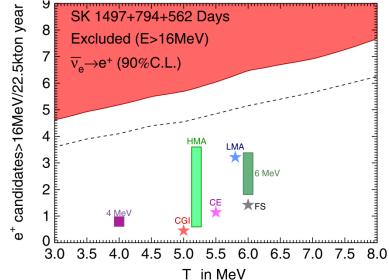
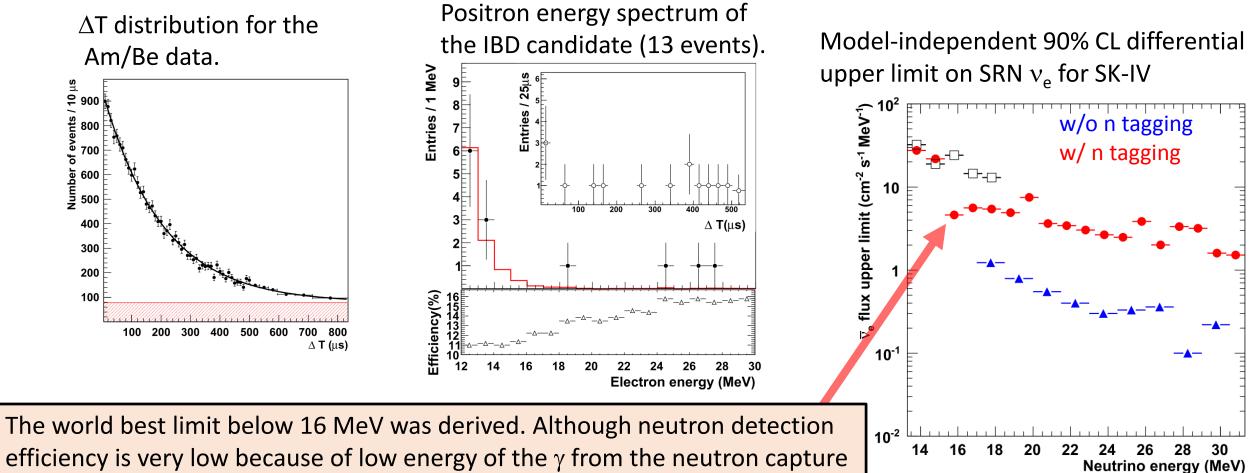



FIG. 15 (color). SK-II LMA best fit result. The relic best fit is 3.05 events per year interacting in the detector (before reduction efficiencies).

K. Bays et al., Physical Rev. D 85 (2012) 052007



FIG. 18 (color online). Results plotted as an exclusion contour in SN neutrino luminosity vs neutrino temperature parameter space. The Irvine-Michigan-Brookhaven (IMB) and Kamiokande allowed areas for 1987A data are shown (originally from [35]) along with our new 90% C.L. result. The dashed line shows the individual 90% C.L. results of each temperature considered separately, which is not a true two-dimensional exclusion contour. Results are in the form of Fig. 6 from [32].


CGI: cosmic gas infall model, **HMA**: heavy metal abundance model **CE**: chemical evolution model, **LMA**: large mixing angle model, **FS**: failed supernova model

SRN search at SK with neutron tagging

H. Zhang et al., Astropart. Phys. 60 (2015) 41–46

28

- 960 days of data in SK-IV.
- Neutron tagging efficiency: $(17.74 \pm 0.04_{stat} \pm 1.05_{sys})\%$

efficiency is very low because of low energy of the γ from the neutron capture on H. It shows a high potential of neutron tagging techniques.

SEARCH FOR SUPERNOVA NEUTRINO BURSTS AT SUPER-KAMIOKANDE

- SK-I and II: 2589.2 live days
- Full detection efficiency (100%) around 100 kpc.
- No bursts was found: 90% CL upper limit is 0.32 SN/year < 100 kpc.
- Three kinds of searches were conducted:
 - (1) Distant supernova search
 - (2) Supernova burst search with low energy threshold
 - (3) Neutronization burst search
- (1) Distant supernova search
 - Time window: >= 2 events/20 sec
 - (ex.) expected # of events in the Andromeda galaxy (~700 kpc) is ~2.
 - Best energy threshold was set from maximum (detection probability)/V# of chance coincidence \rightarrow 17 MeV
- (2) Supernova burst search with low energy threshold
 - Time windows:
 - >= 3 events/0.5 sec
 - >= 4 events/2 sec
 - >= 8 events/10 sec
 - Energy threshold: 6.5 MeV (SK-I) and 7.0 MeV (SK-II)
- (3) Neutronization burst search
 - Time window:
 - >= 2 events/1 msec
 - >= 2 events/10 msec
 - >= 2 events/100 msec

M. Ikeda et al., Astrophys. J. 669 (2007) 519–524

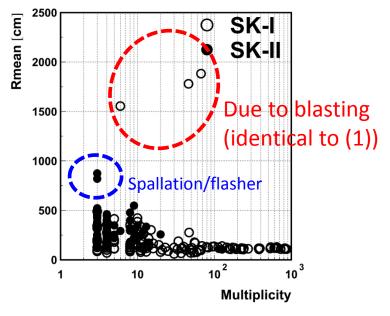
R_{mean}: averaged spatial distance between each event. Sumdir was also used for (3)

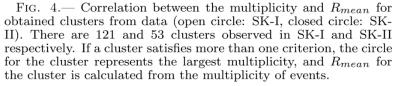
(3) Results of neutronization burst search

TABLE 2 NUMBER OF CANDIDATES AND BACKGROUNDS IN NEUTRONIZATION BURST SEARCH

	SI	K-I	SK-II		
Criterion	Candidate	BG^{a}	Candidate	$\mathrm{BG^{a}}$	
$\geq 2 \text{events} / 1 \text{msec}$	1	2.10	0	0.125	
$\geq 2 \text{events}/10 \text{msec}$	19	19.1	0	1.25	
≥ 2 events/100msec	194	191	10	12.5	
\geq 3events/1msec	0	9.90×10^{-6}	0	1.65×10^{-7}	
\geq 3events/10msec	0	9.78×10^{-4}	0	1.65×10^{-5}	
≥ 3 events/100msec	0	9.78×10^{-2}	0	1.65×10^{-3}	

^aThe number of backgrounds was calculated from the chance coincidence rate of non-supernova signals such as solar neutrino events, flasher events, and spallation events in the data samples.


SEARCH FOR SUPERNOVA NEUTRINO BURSTS AT SUPER-KAMIOKANDE


M. Ikeda et al., Astrophys. J. 669 (2007) 519–524

(1) Distant supernova search 2500 Rmean [cm] SK-I SK-II 2000 0 1500 റ Due to blasting 1000 mis-labeled alibration run \mathbf{m}^{OO} 0 20 30 40 50 60 70 80 90 100 Multiplicity

FIG. 3.— Correlation between the multiplicity and R_{mean} for obtained clusters from data (open circle: SK-I, closed circle: SK-II). There were 19 clusters observed in SK-I and 8 clusters in SK-II.

(2) Supernova burst search with low energy threshold

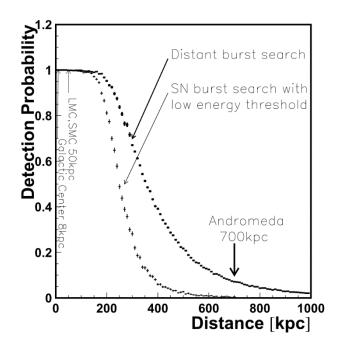
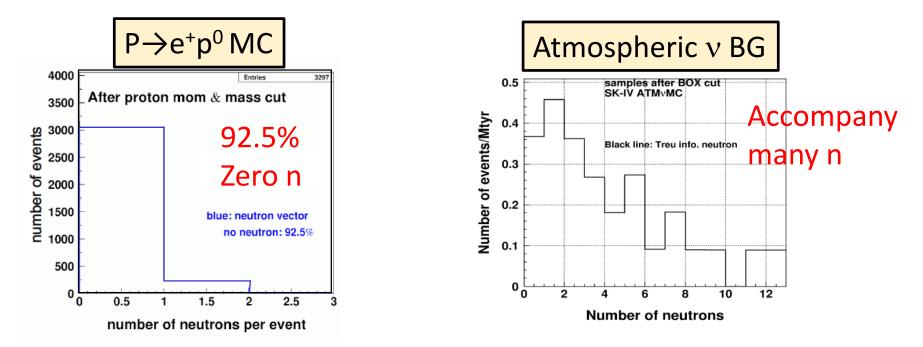
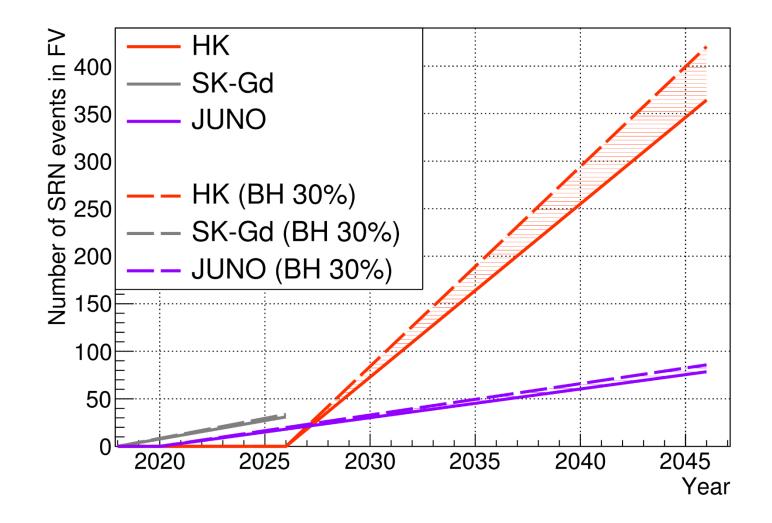
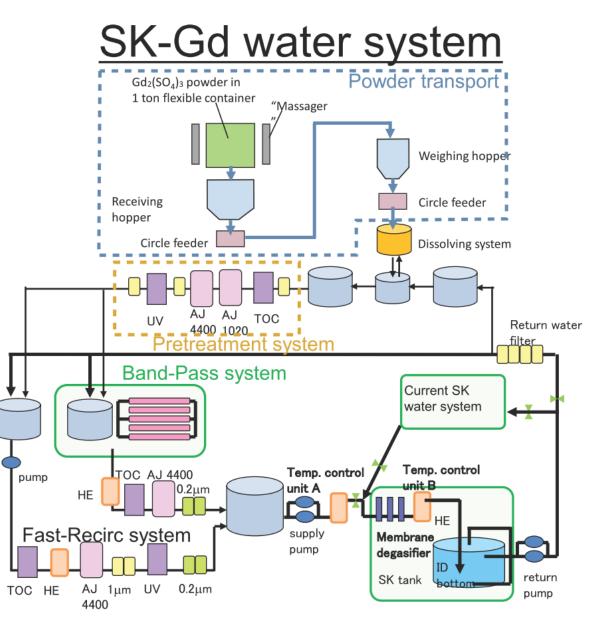



FIG. 6.— The probability of detecting supernovae assuming a specific supernova model at SK. Full (100%) detection probability is retained out to around 100 kpc.

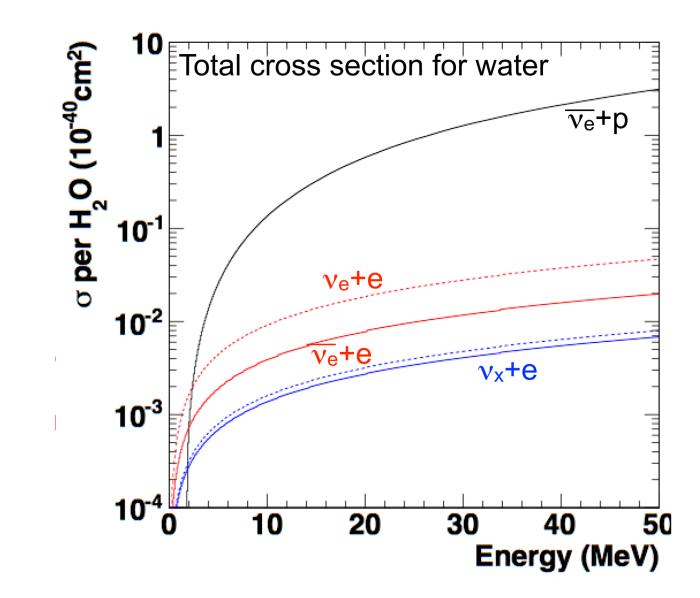
Improvement for proton decay by neutron tagging


• Neutron multiplicity for $P \rightarrow e^+p^0$ MC (left) and atmospheric v BG (right)

- Current BG level: 0.58 events/10 years
- BG with neutron anti-tag: 0.098 events/10 years

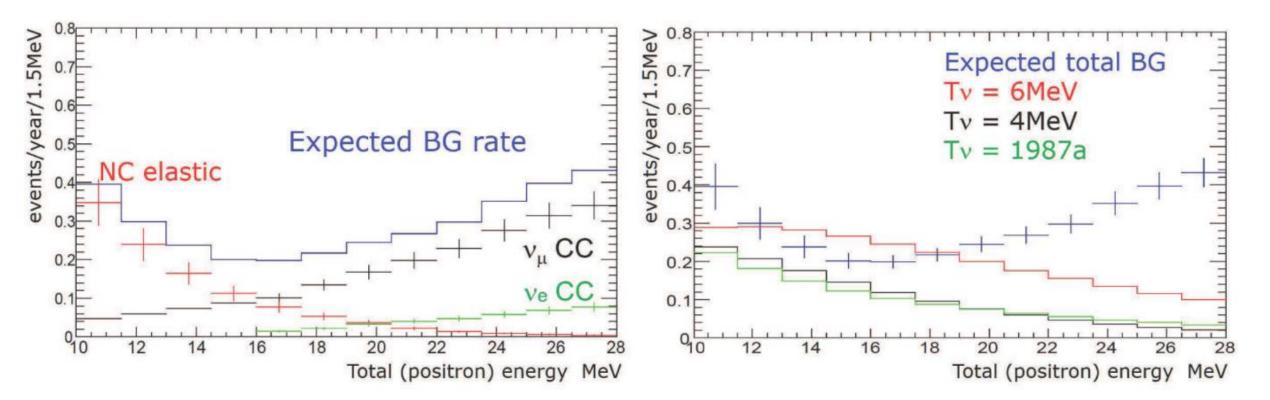

→ BG probability (for observation of 1 event) will be decreased from 44% (w/o anti-tag) to 9% (w/ anti-tag)

Expected # of SRN events at Hyper-K



Gd dissolution and purification system

- The system consists of
 - Gadolinium sulfate transportation unit
 - Dissolving unit
 - Pre-treatment unit
 - Main purification unit
- The system is installed in Lab-G located ~160 m away from the SK tank.
- Gadolinium dissolution into the SK tank in 17 days (120 m³/h flow).


Total cross section for water

Expected SRN spectra in SK-Gd

• Expected BG components of SK-Gd

• Expected SRN spectra of some models S. Horiuchi et al., Phys. Rev. D79 (2009) 083013

