

S. BORDONI on behalf of the ND280 Upgrade Working group

THE T2K NEAR DETECTOR ND280 UPGRADE

Nulnt 18 - GSSI, L'Aquila

OVERVIEW

- The current ND280 detector : advantages and limitations
- The ND280 upgrade
- Expected performances of the upgraded detector and impact to the T2K oscillation analyses

- Tracker system : 2 active neutrino target (FGDs) + 3 TPCs
- π⁰ detector (P0D)
- Electromagnetic calorimeter (ECAL)
- 0.2 T magnetic field (UA1 magnet)
- Muon detector (SMRD)

Design driven by the physics goal of early 2000: measure $\vartheta_{13}!$

NIM A 659 (2011) 106–135

Current role:

- Flux and cross section systematics constrain for T2K oscillation analyses
- Neutrino cross-section measurements (see talks on Monday)

	ν_e CCQE-like	$ u_{\mu}$	$\nu_e \text{ CC1} \pi^+$
Source of uncertainty	$\delta N/N$	$\delta N/N$	$\delta N/N$
Flux (w/ ND280 constraint)	3.7%	3.6%	3.6%
Cross section (w/ ND280 constraint)	5.1%	4.0%	4.9%
Flux+cross section (w/o ND280 constraint) (w/ ND280 constraint)	11.3% 4.2%	10.8% 2.9%	16.4% 5.0%
FSI + SI + PN at SK SK detector	2.5% 2.4%	1.5% 3.9%	10.5% 9.3%
All (w/o ND280 constraint) (w/ ND280 constraint)	12.7% 5.5%	12.0% 5.1%	21.9% 14.8%

Systematics for FHC

Advantages:

- Magnetised detector: discrimination of the wrong sign beam component
- Active target
- > TPCs : 3D reconstruction, charge, momentum and Particle Identification
 - electron and muon separation at > 4σ

Limitations:

- Limited angular acceptance for high-angle and backward -> different from SK
- Poor detection and identification efficiency for $v_e < 1 \text{GeV}$ (γ -conversion contamination)
- Imited detection efficiency for low energy particles stopping in the target (2D view)
- Limited efficiency for the direction determination: Out-Of-Fiducial Volume (Out FV) background

THE ND280 UPGRADE

CERN-SPSC-P357

- Re-design of the upstream part of ND280
- Down-stream tracker (FGD+TPCs) unchanged
 - 2 tons plastic scintillator target : super-FGD (sFGD)
 - two horizontal TPC (hTPC)
 - Time-of-Flight (ToF) all around

Design of the sub-detectors being finalised.

Installation foreseen for Summer 2021. First data-taking expected in 2022.

The new design will strengthen the physics potential of T2K during the phase-II

beam

THE ND280 UPGRADE

- Proposal for the ND280 upgrade submitted last January
- Involvements of many Institutes (e.g. France, Italy, Spain, Germany, Russia, Japan, USA, CERN) including T2K groups and new groups
- TDR in preparation, expected for early 2019

http://cds.cern.ch/record/2299599/files/SPSC-P-357.pdf

1	The T2K-ND280 upgrade proposal				
1	P. Hamacher-Baumann, L. Koch, T. Radermacher, S. Roth, J. Steinmann				
3	RWTH Aachen University, III. Physikalisches Institut, Aachen, Germany				
4	V. Berardi, M.G. Catanesi, R.A. Intonti, L. Magaletti, E. Radicioni				
1	INFN and Dipartimento Interateneo di Fisica, Bari, Italy				
6 7	O. Beltramello, S. Bordoni, R. de Oliveira, A. De Roeck, R. Guida, D. Mladenov, M. Nessi, F. Pietropaolo, F. Resnati				
8	CERN, Geneva, Switzerland				
9	A. Marino, Y. Nagai, E. D. Zimmerman				
27	University of Colorado at Boulder, Department of Physics, Boulder, Colorado, U.S.A.				
PSC-P:	C. Bronner, Y. Hayato, M. Ikeda, Y. Kataoka, M. Nakahata, Y. Nakajima, Y. Nishimura, H. Sekiya				
001 / S	University of Tokyo, Institute for Cosmic Ray Research, Kamioka Obs., Kamioka, Japan				
SPSC-2018- 018 "	S. Fedotov, M.Khabibullin, A.Khotjantsev, A.Kostin, Y.Kudenko, A.Mefodiev, O.Mineev, A.Smirnov, S.Suvorov, N.Yershov				
CERN-509/09/01/2	Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia				
Õ	J. Boix, M. Cavalli-Sforza, C. Jesus, M. Leyton, T. Lux, J. Mundet, F. Sanchez				
17	Institut de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology,				
18	Bellaterra Spain				
19	E. Atkin, P.J. Dunne, P. Jonsson, R.P. Litchfield, K.R. Long, W. Ma, T. Nonnenmacher,				
2 0	J. Pasternak, J. Pozimski, A. Sztuc, Y. Uchida, W. Shorrock, M.O. Wascko, C.V.C. Wret				
2 1	Imperial College, London, United Kingdom				
	1				

THE SUPER-FGD

- 2 tons of 1cm size cube WLS fibres in the 3 directions
- 1.8x0.6x2 m³: ~2M cubes and 60k channels
- Readout done using MPPC
- Full active plastic scintillator target :
 - SD view and very detailed SD reconstruction
 - 4π acceptance
 - tracking for particles entering the TPCs
 - detection of activity around the vertex

General details of the design:

Extruded plastic scint. 1x1x1 cm³ cube

Chemical etching as reflector (~50-100 µm thick)

3 WLS fibers (Kuraray Y11, 2-clad, 1mm) along XYZ

JINST 13 P02006 (2018)

TEST BEAM @ CERN : SFGD

- October 2017: 5x5x5 cm³ prototype
 - light yield in WLS fibres transverse to the bean
- Summer 2018: 24x8x48 cm³ prototype in B field
 - test of the technology with a larger detector : electronics response, tracking capability, pixel granularities

X (cm)

rms = 650 ps

 $\sigma_t \sim 600 \text{ ps/ cube}$

THE HIGH-ANGLE TPCS

Design based on the successful operation of the existing TPCs

Two new horizontal TPCs with :

- 2 volumes of 2.0 (w) x 0.8 (h) x 2(drift) m³
- 8 MMs per volume
- cathode voltage at 25kV (E field of 275 V/cm)
- T2K gas : 95% Ar, 3% CF4, 2% Isobutane
- ~ 4% X₀ material budget
- momentum resolution better than 10% at 1 GeV

THE HIGH-ANGLE TPCS

Two main changes with respect to the existing TPCs :

Field cage

Design derived by the goal of reducing dead space and maximise the tracking volume

- Single wall box guaranteeing gas containment and electrical insulation
- Layers of solid insulator mounted on a composite material (G10-clad honeycomb)
- Field cage strips in the inner side

Aramide Fiber fabric based layer stack

	Material	Thickss (mm)
outer layer	Copper coated polymide film	~ 0.15
	Aramid Fiber Fabric (Kevlar)	2.00
	Aramide HoneyComb panel	25.00
	Aramid Fiber Fabric (Kevlar)	2.00
	Polymide film (insulation)	~ 0.10
inner	Strips (double later) on Kapton foil	~ 0.15
layer	TOTAL RADIATION LENGHT ~ 4% X ₀	~ 29.40

THE HIGH-ANGLE TPCS

Two main changes with respect to the existing TPCs:

MicroMegas

- Use of resistive MMs developed for the ILC TPC
 - charge spread on the pads with time with a Gaussian behaviour
 - good detection performances also for short drift distances
 - ► similar or better space point resolution but with larger pads → less electronics channels
 - ▶ protection of FE electronics from possible spark no more needed → more compact electronics and maximise the acceptance

$$\Rightarrow \rho(r,t) = \frac{RC}{2t} e^{\frac{-r^2 RC}{4t}}$$

TEST BEAM @ CERN : HA-TPC

- Test beam at CERN this summer (august 2018)
- Using HARP TPC field cage with one resistive MM

- Different beam settings, cosmic and radioactive source data collected to study the resistive MM performances
- Data being analysed but the preliminary results are very promising

THE TIME-OF-FLIGHT

- Time-of Flight detector surrounding the new tracker (sFGD + HA-TPC)
- Goal: particle directions determination allowing for a better rejection of incoming background
 - \blacktriangleright panels of cast scintillator bars of 230 (l) x 12 (h) x 1(w) cm^3
 - Arrays of 8 or 6 SiPM of 6x6mm
 - 2 sides readout
 - 80 ps resolution

Test bench developed at UniGe.

Prototype for timing detector for SHIP and ToF detector for the ND280upgrade

TEST BEAM @ CERN : TOF

- Several test beam at CERN
 - ~70 ps time resolution achieved for 1.5m bars (Autums 2017 tests)
 - Summer 2018 : panels prototypes with 168x6x1 cm³ bars tested
 - currently : test beam with ND280upgrade bars

JINST 12 (2017) no.11, P11023 (arXiv:1709.08972)

EXPECTED PERFORMANCES

SUPER-FGD

- Simulation studies have been performed to define the optimal design: the 3D view is key
 - sFGD: high reconstruction efficiency in all direction (~90% for muons)
 - sFGD: lower detection threshold for protons: ~300 MeV

very important to dig nuclear effects (e.g. STV analyses)

SUPER-FGD

Super-FGD high granularity allows for an excellent pattern recognition

- Possibility to disentangle one/two tracks looking at the light yields in the first cubes
 - key handle to disentangle electrons from photo-conversion (ve background)

MC simulation

) sixe 2400

SUPER-FGD

- A possible detection of neutrons would be of deep interest to study neutrino interaction models
- Preliminary studies of the detection efficiency by the super-FGD very promising
 - simulating neutrons in the sFGD, selected by looking at hits away from the vertex activity
- Further developments (energy resolution, gamma background discrimination) are on-going

Using MC particle guns with energy 0 - 500MeV uniform in angle

EXPECTED PERFORMANCES

- Larger detector angular acceptance thanks to the new TPCs and ToF allowing for high-angle and backward going tracks reconstruction
 - Reconstruction efficiency expected to drastically improve
- About 2x events expected for a given exposure thanks to the larger target mass
- Further reduction of the OOFV background thanks to the ToF

Selection	Current-like	Upgrade-like
$ \nu_{\mu} $ ($ \nu$ beam)	93,401	194,654
$\bar{\nu}_{\mu}$ ($\bar{\nu}$ beam)	33,437	63,687
$ \nu_{\mu} $ $(\bar{\nu} \text{ beam})$	17,998	33,773

expected numbers for 1x10²¹ POT

CERN-SPSC-2018-001

EXPECTED PERFORMANCES

- Estimation of the impact of the ND upgrade on the T2K oscillation analyses
- Work in progress to demonstrate the capability of the new detector configuration to disentangle possible wrong/incomplete cross-section models

Parameters	Reduction of the uncertainty
Flux	20 %
σ _ν (CCQE/2p2h)	20% - 40%
FSI	45 %
σ_{ν} (Q ² dependent)	25 %

S. BORDONI (CERN)

EXPECTED PERFORMANCES

- Low momentum threshold and full angle coverage will grant better samples to study nuclear effects
- Single Transverse Variable analyses with the upgrade geometry look very powerful to disentangle nuclear effects

CONCLUSIONS AND OUTLOOK

- The ND280 detector plays a key role in the reduction of flux and cross-crosssection systematics for the T2K oscillation analyses.
- Very well performing since 2009. However the current design present some limitations wrt the current physics program.
- A upgrade of the detector is being design to strengthen T2K physics potential.
 - Detector prototypes tested this summer with test beam.
 - Installation of the final detectors foreseen for Summer 2021.

SUPPLEMENTARY

T2K – II

- beam power upgrade : 485kW to 1.3 MW
- requested extension of the T2K data taking. Approved statistics: 7X1021 POT with T2K-II will reach 20x1021 POT
- Aim for systematics reduction to ~4% and >3sigma sensitivity for CP violation if maximal

HA-TPC

$\operatorname{Paramet}\operatorname{er}$	Value
Overall x - y - z (m)	2.3 - 0.8 - 2.0
Drift distance (cm)	90
Magnetic Field (T)	0.2
Electric field (V/cm)	275
Gas AR-CF ₄ -iC ₄ H ₁₀ (%)	95 - 3 - 2
Drift Velocity $cm/\mu s$	7.8
Transverse diffusion $(\mu m/\sqrt{cm})$	265
Micromegas gain	1000
Micromegas dim. z-y (mm)	340 - 410
Pad z - y (mm)	11 - 11
N pads	36864
el. noise (ENC)	800
\mathbf{S}/\mathbf{N}	100
Sampling frequency (MHz)	25
N time samples	511

SYSTEMATICS FOR RHC

TABLE XX. Effect of 1σ variation of the systematic uncertainties on the predicted event rates of the $\bar{\nu}$ -mode samples.

	$\bar{\nu}_e$ CCQE-like	$\bar{\nu}_{\mu}$
Source of uncertainty	$\delta N/N$	$\delta N/N$
Flux (w/ ND280 constraint)	3.8%	3.8%
Cross section (w/ ND280 constraint)	5.5%	4.2%
Flux+cross section (w/o ND280 constraint)	12.9%	11.3%
(w/ ND280 constraint)	4.7%	3.5%
FSI + SI + PN at SK	3.0%	2.1%
SK detector	2.5%	3.4%
(w/o ND280 constraint)	14.5%	12.5%
(w/ ND280 constraint)	6.5%	5.3%

SIGLE TRANSVERSE VARIABLE (STV) ANALYSES

Phys.Rev. D98 (2018) no.3, 032003

If we replaced the SuperFGD with a big FGD 1, could we still have such a probe of nuclear effects?

SuperFGD sensitivity to low momentum protons is essential

Figure 5: Comparison of the sensitivity to FSI effects through a measure of $\delta \alpha_{\rm T}$ for the SuperFGD and an FGDXY. The y-axis reports the CCQE-like cross section within the phase space accessible by the relevant detector. Detector smearing and acceptance effects are applied as described in Sec. 0.1.2.

