ATLAS @ Instituto de Física La Plata

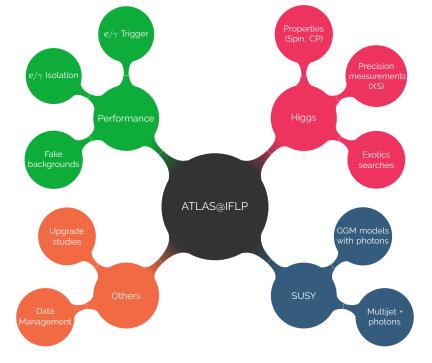
Francisco Alonso

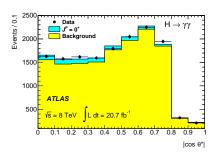
(on behalf of the group)

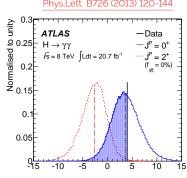
PHENOEXP 2018 May 9, 2018

ATLAS@IFLP group

- Researchers
 - Tere Dova
 - Hernan Wahlberg
 - Fernando Monticelli
 - Francisco Alonso
- PostDoc
 - Josefina Alconada
 - Francisco Arduh
- PhD students
 - Joaquin Hoya
 - Joaquin Bogado
 - Gonzalo Orellana

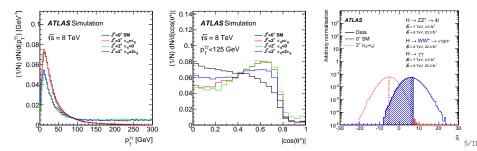



in collaboration with Pheno@IFLP group


 \rightarrow see Alejandro Szynkman's talk!

Higgs physics

- After the Higgs discovery, the interest of the group moved towards its characterisation
- Spin, CP properties and cross-section studies in the Higgs decaying into photons analyses were done
- First spin analysis led to Nobel prize
 - $\cos(\theta^*)$ as discriminating variable


Phys.Lett. B726 (2013) 120-144

SM Higgs spin

- Second analysis refines phenomenological spin 2 model and improves statistical analysis
- Two hypothesis were tested:
 - Standard Model spin 0
 - EFT spin 2 with different scenarios (κ_g, κ_q):

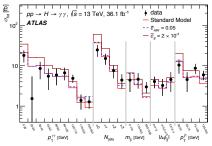
$$\mathcal{L}_{2} = -\frac{1}{\Lambda} \left[\sum_{V} \kappa_{V} \mathcal{T}_{\mu\nu}^{V} X^{\mu\nu} + \sum_{f} \kappa_{f} \mathcal{T}_{\mu\nu}^{f} X^{\mu\nu} \right]$$

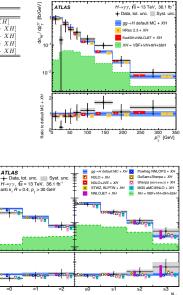
• Using $\cos(\theta^*)$, $p_{\mathrm{T}}^{\gamma\gamma}$ and $m_{\gamma\gamma}$ as discriminating variables

SM Higgs fiducial cross-section

3_{6d} [fb]

10


10


ġ

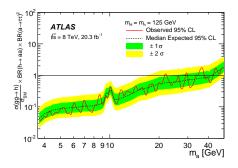
• Cross-section measured in five fiducial regions

Fiducial region	Measured cross section	SM prediction		
Diphoton fiducial	$55 \pm 9 \text{ (stat.)} \pm 4 \text{ (exp.)} \pm 0.1 \text{ (theo.) fb}$	$64 \pm 2 \text{fb}$	$[N^{3}LO + XH]$	
VBF-enhanced	$3.7 \pm 0.8 \text{ (stat.)} \pm 0.5 \text{ (exp.)} \pm 0.2 \text{ (theo.) fb}$	$2.3 \pm 0.1 \mathrm{fb}$	[default MC + XH]	
$N_{\text{lepton}} \ge 1$	≤ 1.39 fb 95% CL	$0.57\pm0.03~{\rm fb}$	[default MC + XH]	
High E_T^{miss}	≤ 1.00 fb 95% CL	$0.30\pm0.02~{\rm fb}$	[default MC + XH]	
$t\bar{t}H$ -enhanced	≤ 1.27 fb 95% CL	$0.55\pm0.06~{\rm fb}$	[default MC + XH]	

- Deconvoluted from detector effects using correction factors
- Provided differential XS for 26 variables
- Measurements allow EFT NP studies
 - → results compatible with SM

arXiv:1802.04146

6/11

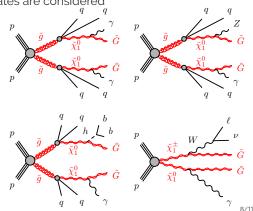

Exotics Higgs decays

- NMSSM predicts an additional light pseudoscalar Higgs boson
- In this model the 125 GeV SM Higgs boson is allowed to decay to a pair of lighter pseudoscalar Higgs bosons "*a*":

$$h \rightarrow aa \rightarrow \mu\mu\tau\tau$$

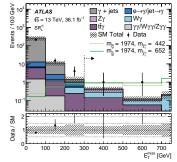
• Last ATLAS result in 2015 using 8 TeV data: Phys. Rev. D92 (2015) 052002

 \rightarrow working in the full Run 2 analysis

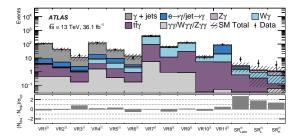


SUSY searches with photons

- Events containing photons and missing energy (plus jets or leptons) are distinctive signatures of SUSY models with gauge-mediated supersymmetry breaking
- In GGM models the LSP is the \tilde{G} and the final states are determined by the NLSP, $\tilde{\chi}_1^0$ for most of the parameter space:
 - $\tilde{\chi}_1^0$ (bino, wino and higgsino mixing) \rightarrow decays into $\tilde{G} + \gamma, Z$ o h
- Several searches with different final states are considered


• Bino-like
$$\tilde{\chi}_1^0$$
, BR $(\tilde{\chi}_1^0 \to \tilde{G}\gamma) \sim 100\%$
 $\to \gamma\gamma * E_{\mathrm{T}}^{\mathrm{miss}}$

- Bino-higgsino admixture $\tilde{\chi}_1^0 \ (\mu > 0)$, BR $(\tilde{\chi}_1^0 \to \tilde{G}\gamma) \sim 50\%$ $\to \gamma + \text{jets} + E_T^{\text{miss}}$
- Bino-higgsino admixture $\tilde{\chi}_1^0$ ($\mu < 0$), BR($\tilde{\chi}_1^0 \rightarrow \tilde{G}\gamma/\tilde{G}h$) ~ 50% $\rightarrow \gamma + b$ -jets + $E_{\rm T}^{\rm miss}$
- Wino-like $\tilde{\chi}_1^0$ (co-NLSP) $\rightarrow \gamma + \ell + E_T^{miss}$


SUSY search with $\gamma + {\sf jets} + {\it E}_{ m T}^{ m miss}$

- Strong gluino production ($\tilde{g}\tilde{g}$)
- Three SRs to cover different $(m_{\tilde{g}}, m_{\tilde{\chi}_1^0})$
- Background estimation
 - Three CR to "correct" the γ + jets, $W\gamma$ and $t\bar{t}\gamma$ MC
 - Data-driven for fake photon backgrounds $(W/Z + \text{jets}, \text{ multijet}, t\bar{t})$

arXiv:1802.03158

• Summary of the observed and expected number of events in all the VRs/SRs

SUSY GGM search results

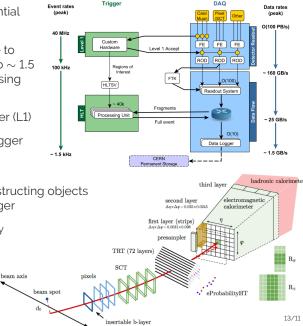
Results compatible with SM expectation

 \rightarrow Small excess (about 2.3 σ) observed in one of the SR

Signal Region	$N_{\rm obs}$	N_{exp}	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	$\langle A \epsilon \sigma \rangle^{95}_{\rm obs} [{\rm fb}]$	$\langle A \epsilon \sigma \rangle^{95}_{\rm exp} [{\rm fb}]$	Z(p)
$SR_{S-L}^{\gamma\gamma}$	0	$0.50^{+0.30}_{-0.26}$	3.0	$3.1^{+1.4}_{-0.2}$	0.083	$0.086^{+0.039}_{-0.003}$	0.00 (0.50)
$SR_{S-H}^{\tilde{\gamma}\gamma}$	0	$0.48^{+0.30}_{-0.25}$	3.0	$3.1^{+1.3}_{-0.1}$	0.083	$0.086^{+0.036}_{-0.003}$	0.00(0.50)
$SR_{W-L}^{\gamma\gamma}$	6	3.7 ± 1.1	8.6	$5.8^{+2.8}_{-1.6}$	0.238	$0.161^{+0.078}_{-0.044}$	1.06(0.14)
$SR_{W-H}^{\gamma\gamma}$	1	$2.05^{+0.65}_{-0.63}$	3.7	$4.4^{+1.9}_{-1.0}$	0.103	$0.122^{+0.053}_{-0.028}$	0.00(0.50)
$SR_L^{\gamma j}$	4	$1.33^{+0.54}_{-0.32}$	7.6	$4.7^{+1.6}_{-0.8}$	0.210	$0.130^{+0.044}_{-0.022}$	1.81(0.035)
$SR_{L200}^{\gamma j}$	8	$2.68^{+0.64}_{-0.63}$	11.5	$5.4^{+2.2}_{-1.2}$	0.318	$0.151^{+0.060}_{-0.033}$	2.36(0.009)
$SR_{H}^{\gamma j}$	3	$1.14_{-0.36}^{+0.61}$	6.6	$5.9^{+1.8}_{-1.1}$	0.183	$0.162^{+0.050}_{-0.030}$	$1.20\ (0.116)$

• Limits to new physics and to the SUSY particles in the considered GGM models

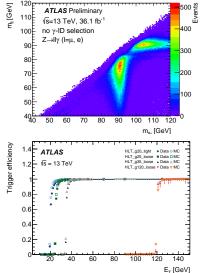
 $\rightarrow m_{\tilde{g}} \sim 2 \text{ TeV}, m_{\tilde{q}} > 1.8 \text{ TeV} \text{ and } m_{\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}} > 1 \text{ TeV}$


Summary and plans

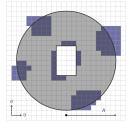
- Performance, upgrade and computing studies (more in the backup slides)
 - Really important for the collaboration and used in every physics result
 - Plan to provide in kind contribution to TDAQ Phase-II upgrade, in Global Trigger Hardware/Firmware
- Exotics Higgs decays
 - SM Higgs decaying to pseudoscalar Higgs boson analysis in the $h\to aa\to \mu\mu\tau\tau$ channel
- SUSY searches
 - \bullet Follow up small excess in photon + jets + $E_{\mathrm{T}}^{\mathrm{miss}}$ analysis
 - Run 2 results with all final states considered for GGM search
 - Currently investigating other models involving photons in the final state (e.g. Stealth SUSY in multijet + photons + low $E_{\rm T}^{\rm miss}$)

Backup

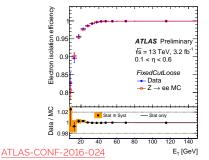
Trigger

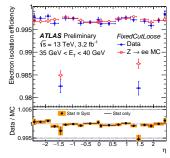

- The trigger is one of the essential pieces of the ATLAS detector.
- \bullet Two-level system responsible to reduce event rate recording to ~ 1.5 kHz, from the LHC beam crossing rate of 40 MHz.
- Hardware-based Level 1 trigger (L1)
- Software-based high-level trigger (HLT)
- $\bullet \ e/\gamma$ trigger is based on reconstructing objects within a RoI seeded by L1 trigger
- Fast algorithms reject events early
- Precise algorithms to efficiently identify e/γ
- Cut-based ID for photons, LH-based ID for electrons

Photon trigger performance


14/11

- The e/γ trigger performance studies are important to understand, improve the trigger, and also provide to the trigger efficiency to the precision analyses and searches for new physics
- Efficiency measured with bootstrap method
 - → Events selected from a fully efficient reference trigger
 - Bayesian statistical uncertainty.
 - Plateau efficiency \sim 99%.
- Photons from Z radiative decay $Z \rightarrow \ell \ell \gamma$
 - High purity photon sample
 - Low stat. for high p_{T} photons




Photon/electron isolation

- Most of the interesting physics signatures at the LHC require the identification of prompt non-fake leptons and/or photons
- These leptons/photons are usually isolated, without much activity around them

- → It is important to define a proper isolation energy to reduce contamination from non-prompt and fake objects
 - The data-driven efficiencies are measured in $Z \rightarrow ee$ for electrons and direct photons for photons, and scale factors are used to correct the MC to match the efficiency in data

ATLAS Data Management

- The Worldwide LHC Computing Grid is a global collaboration of computer centres (170 centres in 41 countries). It provides a resource to store, distribute and analyse the 15 PB of data generated every year by the LHC
- Rucio is the Distributed Data Management system in charge of managing all ATLAS data on the grid
- Migrated from dq2 in 2015 with zero downtime
- 350 PB of physics data across more than 130 data centers globally, with more than 830 million files
- > More than 3 million file transfers
- We are using Data Analytics to predict the time of the data transfers
 - \rightarrow this will allow a better scheduling and a better resource usage of the GRID

