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The group at UBA has specialized in the area of jets/b-jets
at the three levels of the ATLAS data processing chain

Data taking (trigger):
» L1 (hardware): Measurement of the b-jet trigger efficiency using FTK tracks

» HLT (software): tuning of b-jet trigger and improvement of jet trigger efficiency

Data reconstruction (performance):
» Jet energy calibration and resolution
> |dentification of W-bosons using jet substructure

» Identification b-jets produced via gluon splitting (g — bb)

Data analysis (physics):
» Precision measurements of QCD jet cross sections:
> Inclusive jets (see G. Marceca’s talk tomorrow)
> Dijets (see G. Marceca’s talk tomorrow)
> Multijets

» Searches
» Supersymmetry: 3bjet+0lepton or multijets final states
» Exotics: extra dimensions, composite quarks, DM, FC Higgs couplings
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Tuning of b-jet trigger
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» Jet is tagged by applying a likelihood ratio
test on discriminant variables

Light jet rejection
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» Algorithm is tuned to achieve predefined
tagging efficiency points
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twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults

Improvement of the jet trigger performance in 2017

Methodology:

» Jet energy corrected using longitudinal
structure of the calorimeter shower and
tracking information

Consequence:

» Trigger efficiency rises much more
rapidly

Application:

» Higher fraction of useful events for a
given trigger rate

Trigger efficiency vs leading jet pr
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults
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MC-based jet energy calibration
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Global sequential calibration
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» Jet response depends on variables sensitive to particle composition and
distribution of energy in the jet (for instance, number of tracks, ny)

» Resolution improves after correcting for this effect
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.072002
http://cdsweb.cern.ch/record/2001682

Calibration of jets of different sizes

g 1.2 Anti k. R= 04 (topo cluster) ATLAS E
s 1.1 (()310 < <0 work in progress
Our group leads the team deriving the 8 1 det e
data-driven jet energy calibrations for > E —h-02 *
anti-k; jets with R = 0.2 and R = 0.6 g Rog
o Tros
el = R=0.7 =
i i . ‘ R=0.8 5
Applications: 0af R Z['] log( )
SM precision measurements: 035 o r<g 2X1O
» Allow direct comparison with CMS E.. [GEV]
» Help to understand R=0.4 vs R=0.6 data/theory differences
» Constrain hadronisation and UE models (non-perturbative effects)
Jet substructure: i 7\
» Reclustering of large-R jets from R=0.2 jets: «:.:_f_’ I
intrinsic pile-up subtraction and per-subjet calibration ST .i
Searches: R

» Improve signal acceptance of analyses, like h—aa—bbbb
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Search for new phenomena in high-mass final states with a photon and
a jet from pp collisions at v/s = 13 TeV with the ATLAS detector

Eur.Phys.J. C78 (2018), 102
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https://doi.org/10.1140/epjc/s10052-018-5553-2

Search for high-mass ~+jet resonances

» Signals:

o xBRfb]

—e— ADD QBH (n=6)
—+— RS1QBH (n=1)

» Evaporation of non-thermal quantum black holes:

-

> QBH ADD with 6 extra dimensions (n=6)
» QBH RS1 with 1 extra dimension (n=1)

» Decay of excited quark (g*)

v

Complements dijets search

Events /0.1 TeV

v

Focus on s-channel production of a resonance

v

Strategy: Search for bump in the steeply falling
background from SM ~ + jet production

Stat. significance

v

Main background: SM t-channel v + jet production
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Selection

Only some examples

Cuts to improve signal-to-noise ratio:
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Purity Measurement

True and fake photon contributions Template fit
evaluated with template fit on s r L A B T
photon isolation distribution (E7,..): & | e Tev. 3671t |
) Eo 0.2— observed pl’Jrity: 0.93 n
» Fakes: Datain a CR .- F (1.0<m <1.1 TeV) E
(orthogonal to SR) S | b i
% [ ® Data 1
» True photons: MCs g i - Expectedrealy )
(O N O Expected fake y N
> E:I'Y,iso = Exjso — 0.0022 x E:ry | Total expected real and fake y i
> Erjso : Energy around the photon i o|
within AR = 0.4. S T i []
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» The purity is ~ 92% =+ 4% Efjso [GEV]
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Upper limits on cross-sections and lower limits on the masses
q* RS1
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> No significant deviation from the background-only hypothesis is observed

> Cross-section limits for generic Gaussian-shaped resonances are extracted rar1s



Two analyses in progress:

1. Search for resolved dijet resonances produced in association with a
photon or a jet

2. Search for flavour-changing Higgs couplings
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1. Resolved Dijet+ISR - _ )
Traditional high-mass dijet search:

» Low-mass reach limited by jet

ATLAS searches for DM mediators trigger prescales

E T
0.35[ ATLAS Preliminary March 2017 Diet+ISA (1), 155

V5 = 13 TeV; 3.4-37.0 fbo™" ATLAS OONF-2016.070

o

Alternative:

Dijt+ISR (), 15.5 fo”
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Scope of Dijet+ISR search:

» Search for new particles decaying into a pair of jets
» Alternatively:
> Set model-specific limits on mz, using MC signals
> Set model-independent limits for reinterpretation using Gaussian shapes

Previous preliminary results but never published by ATLAS or CMS
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2. Flavour-changing Higgs couplings

Motivation:

» Search for Hitq FC coupling

» CMS reported 2.40 in H — ur . -
» SMBR(t — Hc) ~ 107"° , ; )
> In2HDM BR ~ 1072 b <Dmi

Strategy: T — . by <t

» Event selection: MET+lepton+4jets (2 b-jets) "<
» Top and Higgs mass constrains

» Main background: {t semileptonic
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Conclusions
Extensive range of activities in jets/b-jets by the Buenos Aires group in ATLAS

Trigger
» Tuning and measurement of efficiency of b-jet trigger.
» Optimization of jet trigger bandwidth through improvement of resolution.

Performance:
» |dentification of gluon-splitting b-jets and boosted W-boson large-R jets
using machine learning MVA techniques.

» Ample involvement in jet energy calibration and resolution, coordinators
of the data-driven effort to calibrate jets of different sizes.

Physics:
» Main analysts of the QCD precision measurements on the inclusive,

dijet-mass and multijet production cross-sections.

» Search for exotic particles in the y+jets and dijets+ISR channels, and

BSM FC Higgs couplings in the 4jets(3b)+lepton+Ef"™ channel.
» Supersymmetry searches in two jet channels: 3bjet+0L and multijets.
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Back-up slides
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Search for new phenomena in high-mass final states with a photon and
a jet from pp collisions at /s = 13 TeV with the ATLAS detector

Eur.Phys.J. C78 (2018) no.2, 102
arXiv:1709.10440 [hep-ex]
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https://doi.org/10.1140/epjc/s10052-018-5553-2
https://arxiv.org/abs/1709.10440

Background

» Irreducible background:
» “Prompt” production:

» Compton scattering of a quark and a
gluon

» quark-antiquark annihilation

> gluon annihilation (not at tree-level)

» “Fragmentation” production (multi-jet
production):

> Photons from hadron decays
> Photons radiating off a quark
» Reducible background:
> Fakes: Events with a jet but without a photon (for instance dijet events)

» Significantly reduced by using tight photon ID and isolation selection
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Purity-corrected m.,;

dN/dm . [L/TeV]

Data/Model
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v

distribution vs theory prediction
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Background Modelling
Fit function to data:
fb(X = m"/l/\/g) = pa(1 — X)pbx_ ZZ:O Pn log” x

Allows to modify the functional form simply by adding or removing dof:

» k=0 (1) is used for QBH (g*) signal search

ATLAS ® data
Vs =13 TeV, 36.7 fb* —— bkg fit xZ/ndof = 0.91

bkg fit uncertainty +1o

Events /0.1 TeV
&

---a'm =55Tev

.
3
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Stat. significance
i
I
i
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Uncertainty on the Background Modelling

Non-closure from the choice of the functional form (spurious signal):

> ospurious €valuated with a s+b fit on bkg-only simulated dataset

» Number of signal events is taken as possible bias due to non perfect
modelling of the background shape

24
SpUPIoUS
Spyoor e- LS)ADJ

NG rRlNE:
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Signal Modelling
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Search for resolved dijet resonances produced
in association with a photon or a jet

(work in progress)
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Analysis description

» Search for resolved dijet resonance in two channels:
> Jets with no flavour requirement

> At least two b-tagged jets
» High-pr ISR object used for triggering

» ISR object can be a jet or a photon
» Challenge in jet case: Which jet is ISR? X
> Factor to consider:

» Efficiency for selecting correct jet pair in signal
> Solution:

> Consider leading pr jet as ISR (appropriate
until ~ 700 GeV)

» Smooth background from QCD can be )
described by fitting data N

» Upper range of the search set by dijet
high-mass search

» Lower range set by point at which a single
large-R jet is preferable to reconstruct the Z’
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Cut to improve signal-to-noise ratio
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Limit setting cartoon

Photon ISR Jet ISR

Two triggers:
> Single photon: 170 < m;[GeV] < 300

> Photon + three jets:  m;[GeV] > 300

: H m; [GeV] H m; [GeV]
170 300 300

oF

300 my [GeV] 300 m, [GeV]
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