Measurement of jet production with the ATLAS detector

Gino Marceca

Universidad de Buenos Aires

PHENOEXP-2018, 9 May 2018

Inclusive-jet and dijet cross-sections at 13 TeV arXiv:1711.02692 (7th November 2017)

Overview (Jet cross-sections at 13 TeV)

- Measurement of the inclusive-jet and dijet cross sections at 13 TeV with an integrated luminosity of 3.2 fb⁻¹.
- Measured cross-sections are compared to NLO QCD calculations corrected for non-perturbative and electroweak effects.
- Level of agreement with NLO predictions is quantified via a χ^2 test.
- Qualitative comparison with the recent NNLO QCD calculations for inclusive-jet cross-section at 13 TeV.

Event Reconstruction and Selection

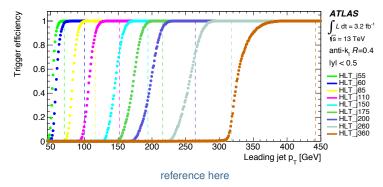
- Jets reconstructed using the anti-k_t algorithm, with a radius parameter value of R=0.4.
- Jets calibrated using Monte Carlo simulation and data-driven methods.

Analysis	Selection	Phase-space
Inclusive-jet @13 TeV	<i>y</i> < 3.0	<i>y</i> < 3.0
	$p_{ m T} >$ 100 GeV	<i>p</i> _T : 100 – 3500 GeV
Dijet @13 TeV	y* < 3.0	y* < 3.0
	$p_{T2} > 75 \text{ GeV}$	<i>m_{jj}</i> : 300 – 9000 GeV
	$H_{T2} = (p_{T_1} + p_{T_2}) > 200 \text{ GeV}$	

 $y^* = |y_1 - y_2| \, /2$ where 1,2 subscripts label the highest and second highest p_T jet within |y| < 3.0

Cross-section definition

The **inclusive-jet** cross-section is measured as a function of the jet p_T , in six absolute jet rapidity |y| bins:


$$|y| < 0.5, \quad 0.5 \le |y| < 1.0, \quad 1.0 \le |y| < 1.5,$$

 $1.5 \le |y| < 2.0, \quad 2.0 \le |y| < 2.5, \quad 2.5 \le |y| < 3.0.$

The **dijet** cross-section is measured as a function of the dijet invariant mass, in six y^* bins:

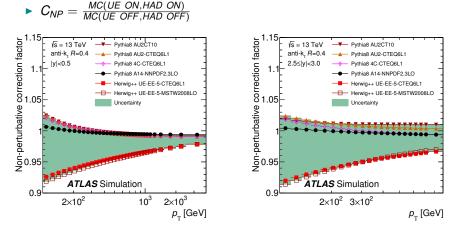
$$y^* < 0.5, \quad 0.5 \le y^* < 1.0, \quad 1.0 \le y^* < 1.5,$$

 $1.5 \le y^* < 2.0, \quad 2.0 \le y^* < 2.5, \quad 2.5 \le y^* < 3.0.$

Trigger

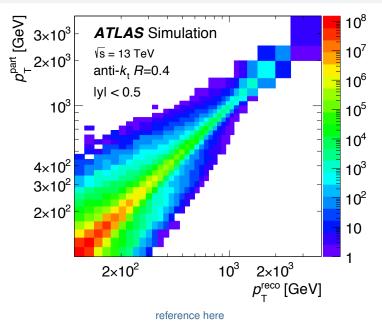
Trigger Data is selected using several jet transverse energy thresholds. Trigger strategy Inclusive combination of single-jet triggers. arXiv:0901.4118

► The trigger efficiency is equal to or above 99.9% in the *p*_T range where it was considered.


Pythia, Sherpa, Powheg and Herwig++ MC generators¹ used for:

- Deconvolution of detector effects (unfolding) (Pythia and Sherpa).
- Evaluation of non-perturbative (NP) corrections (Pythia).
- Estimation of NP correction uncertainties (Pythia and Herwig++).
- Propagation of experimental systematic uncertainties (Pythia and Powheg).

¹The MC versions and PDF sets used for each generator are detailed in the backup


NP corrections at 13 TeV

Considers effects from underlying-event and hadronisation.

- Iterative Dynamically Stabilised (IDS) method used to correct reconstructed spectra for detector inefficiencies and resolution effects.
- Based on a transfer matrix (TM) constructed using simulated events.
- Inclusive-jet: the TM is filled jet by jet by matching a reco jet with a particle-level jet within a radius of R = 0.3.
- **Dijet**: the TM is filled event by event when lying in the same y^* bin.

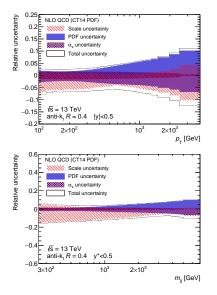
$p_{\rm T}$ Transfer Matrix

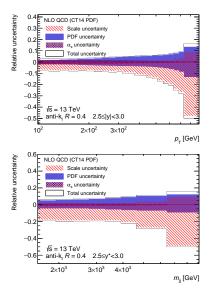
Theoretical Predictions

 QCD calculations: Done with NLOJet++ plus non-perturbative and electroweak corrections

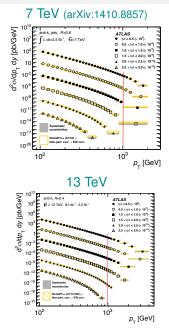
Nominal scale choices:

- Inclusive-jet: leading jet p_T (p_T^{max}).
- Dijet: $p_T^{\max} e^{0.3y^*}$
- PDFs: CT14, NNPDF 3.0, MMHT14, HERAPDF 2.0, ABMP16.

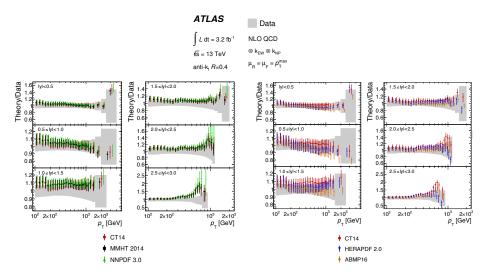

Uncertainties in the NLO calculation:


- $(\mu_{\rm R}, \mu_{\rm F})$ scale variations (dominant at low $p_{\rm T}$).
- PDFs (dominant at high p_T).
- α_s variation (mostly constant in all p_T and |y| ranges considered).

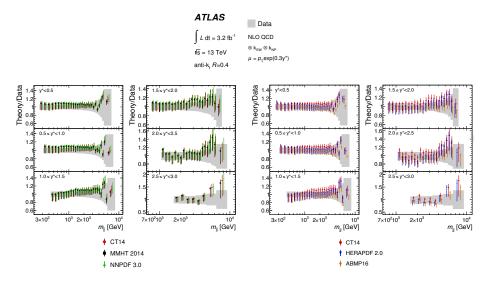
Additional theoretical uncertainty:


Alternative scale choice based on each jet p_T (p_T^{jet}). Difference w.r.t to p_T^{max} was treated as an uncertainty.

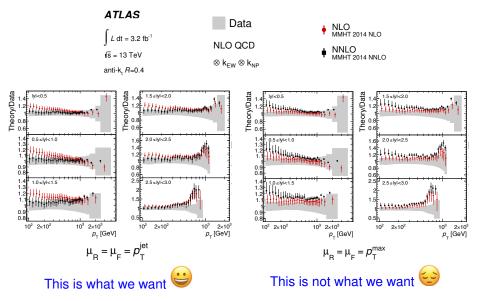
NLO QCD uncertainties at 13 TeV


Results: Cross-section comparison

8 TeV (arXiv:1706.03192) d|y| [pb/GeV] ATLAS S= 8 TeV 20 2 fb⁻¹ anti-k, R= 0.4 d[°]a/dp_{T,int} c 10 10 |v| <0.5 10 -0 70 102 2×10^{2} 10³ 2×10³ p_{T int} [GeV]


- 7 TeV result shown as a comparison with 8 and 13 TeV.
- Significant improvement in systematics and range w.r.t 7 TeV measurement.
- Greater p_T range reached by 13 TeV w.r.t 8 TeV.

Results: NLOJet++ vs Unfolded Data (Incl-jet 13 TeV)



NNPDF, CT14 and MMHT overestimate the cross-section for the last two |y| bins.

Results: NLOJet++ vs Unfolded Data (Dijet 13 TeV)

Results: NNLOJet vs Unfolded Data

Results: p-values w.r.t NLO (Inclusive-jet 13 TeV)

			$P_{\rm obs}$		
Rapidity ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$					
y < 0.5	67%	65%	62%	31%	50%
$0.5 \le y < 1.0$	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \le y < 1.5$	65%	61%	67%	50%	55%
$1.5 \le y < 2.0$	0.7%	0.8%	0.8%	0.1%	0.4%
$2.0 \le y < 2.5$	2.3%	2.3%	2.8%	0.7%	1.5%
$2.5 \le y < 3.0$	62%	71%	69%	25%	55%

Results: global fits (Inclusive-jet 13 TeV)

χ^2/dof all $ y $ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$	419/177	431/177	404/177	432/177	475/177
$p_{ m T}^{ m jet}$	399/177	405/177	384/177	428/177	455/177

- Strong tensions (p-values ≪ 10⁻³) observed when considering all jet p_T and |y| regions. Similar pattern present also at 8 TeV.
- Numerous studies on the correlation of the systematic sources were done but the tension remains.

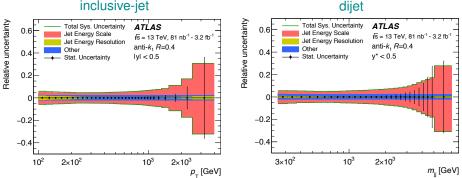
Results: p-values (Dijets 13 TeV)

			$P_{\rm obs}$		
y^* ranges	CT14	$\rm MMHT\ 2014$	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \leq y^* < 1.0$	27%	23%	19%	32%	31%
$1.0 \leq y^* < 1.5$	66%	55%	48%	66%	69%
$1.5 \leq y^* < 2.0$	26%	26%	28%	9.9%	25%
$2.0 \le y^* < 2.5$	43%	35%	31%	4.2%	21%
$2.5 \le y^* < 3.0$	45%	46%	40%	25%	38%
all y^* bins	8.1%	5.5%	9.8%	0.1%	4.4%

As opposed to the inclusive case, good agreement when considering all y* bins together.

Conclusions: Inclusive-jet and dijet analyses

- The measurements of the inclusive jet and dijet cross-sections at 13 TeV was presented.
- ► The Data were collected with the ATLAS detector during 2015 corresponding to an integrated luminosity of 3.2 fb⁻¹.
- Quantitative(Qualitative) comparisons between data and NLO(NNLO) pQCD calculations, corrected by NP and EW effects, were performed.
- ► Fair agreement when considering jet cross-sections in individual |y|,y* bins independently.
- Tensions between data and theory observed when considering data from all jet p_T and |y| regions.
- ► No significant deviations between data and NNLO when using p_T^{jet} scale.
- ▶ NNLO overestimates the cross-sections when using p_T^{max} scale.


back-up slides

Monte Carlo Generators @8TeV & @13TeV

- Simulated events using the Pythia v8.160(v8.186) MC generator with CT10(NNPDF 2.3) LO PDF and AU2(A14) tune.
- Evaluation of non-perturbative uncertainties: Pythia v8.186 and Herwig++ v2.7.1.

Experimental uncertainties @13 TeV

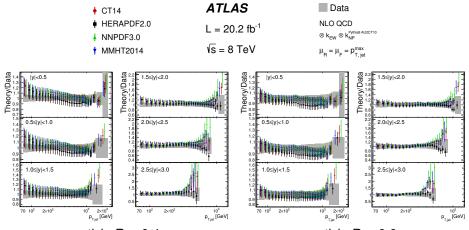
- The Jet Energy Scale, Jet Energy Resolution and Luminosity uncertainties were estimated and taken into account using MC and data-driven techniques.
- The JES is the dominating uncertainty.

inclusive-jet

Systematics: Correlation Studies at 13 TeV

- To test in a realistic way the sensitivity to the correlations, alternative scenarios were provided for the two-point systematics.
- A complete description of these studies can be found in the 8 TeV measurement arXiv:1706.03192.
- Different options for splitting the systematics in sub-components as a function of p_T and |y| where studied.
- For the theoretical uncertainties 3 other splitting options were tried as discussed here.
- The χ^2 is reduced by up to 58 units by splitting both the theoretical and experimental uncertainties.
- Despite this, the corresponding p_{obs} values are still $\ll 10^{-3}$

Systematics: Correlation Studies at 13 TeV

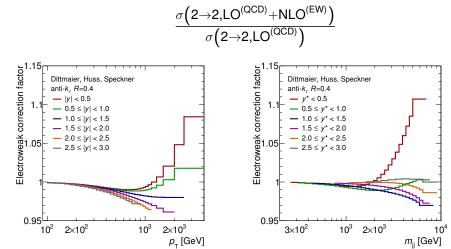

Summary of the 18 options for splitting the two-point systematic uncertainties into two (first 12) or three (last 6) sub-components:

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Splitting option	Sub-component(s) definition(s), completed by complementary	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))$ · uncertainty	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot 0.5 \cdot \text{uncertainty}$	
$\frac{5}{6} \qquad L((\ln(p_{T}[TeV]))^{2}, (\ln(0.1))^{2}, (\ln(2.5))^{2} \cdot uscertainty}{6} \\ \frac{1}{2} L((\ln(p_{T}[TeV]))^{2}, (\ln(0.1))^{2}, (\ln(2.5))^{2} \cdot 0.5 \cdot uscertainty}{L(ly[0, 3)^{3} uscertainty} \\ \frac{9}{9} \qquad L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 3)^{2} \cdot uscertainty}}{10} \\ \frac{1}{10} \qquad L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 3)^{2} \cdot uscertainty}}{L(ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 3)^{2} \cdot uscertainty}} \\ \frac{12}{12} \qquad L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}}{L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}} \\ \frac{14}{14} \qquad L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}} \\ \frac{16}{15} \qquad L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}} \\ \frac{16}{15} \qquad L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}} \\ \frac{16}{16} \qquad \sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}}} \\ \frac{17}{16} \qquad \sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}} \\ \sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(ly[0, 1.5)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.1)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.1)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.1)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.1)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.2)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.2)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.2)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.2)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot \sqrt{1 - L(ly[0, 0.2)^{2} \cdot uscertainty}}} \\ \frac{18}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)^{2} \cdot 1 - L(ly[0, 0.2)^{2$	3	$L(p_{\rm T}[{\rm TeV}], 0.1, 2.5)$ · uncertainty	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$L(p_{T}[TeV], 0.1, 2.5) \cdot 0.5 \cdot uncertainty$	14/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	$L((\ln(p_T[\text{TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2)$ uncertainty	Where:
$\frac{8}{9} \qquad \frac{L(y , 0, 3) \cdot 0.5 \cdot \text{uncertainty}}{2}{\frac{9}{10} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot L(y , 0, 3) \cdot \text{uncertainty}}{10} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2 \cdot \text{uncertainty}}}{\frac{12}{12} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2 \cdot 0.5 \cdot \text{uncertainty}}}{\frac{12}{12} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2 \cdot 0.5 \cdot \text{uncertainty}}}{\frac{12}{14} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2 \cdot 0.5 \cdot \text{uncertainty}}}{\frac{16}{16} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}{\frac{16}{16} \qquad L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}{\frac{16}{16} \qquad \sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}}$ $\frac{16}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}}$ $\frac{17}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}}}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 1)^2 \cdot \text{uncertainty}}}}}$ $\frac{18}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 2)^2 \cdot \text{uncertainty}}}}}{\frac{18}{\sqrt{1 - L(\ln(p_T[TeV]), \ln(0, 1), \ln(2.5))^2 \cdot \sqrt{1 - L(y , 0, 2)^2 \cdot \text{uncertainty}}}}}$	6	$L((\ln(p_T[\text{TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2) \cdot 0.5 \cdot \text{uncertainty})$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L(y , 0, 3)· uncertainty	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	$L(y , 0, 3) \cdot 0.5$ uncertainty	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3)$ uncertainty	$(x \min max) = x - \min x$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2}$ uncertainty	$L(X, \Pi, \Pi, \Pi, \Pi) = \frac{1}{\max}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3) \cdot 0.5 \cdot \text{uncertainty}$	max – min
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2} \cdot 0.5 \cdot \text{uncertainty}$	for a line the new realization record
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1.5)^2} \cdot \text{uncertainty}$	for x in the range [min,max]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5)) \cdot L(y , 1.5, 3)$ uncertainty	
$\frac{L(m(p_{T} TeV)), in(0.1), in(2.5)) \cdot L(y_{1}, 1, 5) \text{ uncertainty}}{L(n(p_{T} TeV)), in(0.1), in(2.5)) \cdot (J - L(y_{0}, 0, 2)^{2} \text{ uncertainty}}$ $\frac{16}{\sqrt{1 - L(n(p_{T} TeV)), in(0.1), in(2.5)) \cdot \sqrt{1 - L(y_{0}, 0, 1, 5)^{2} \text{ uncertainty}}}{\sqrt{1 - L(n(p_{T} TeV)), in(0.1), in(2.5))^{2} \cdot \sqrt{1 - L(y_{0}, 1, 5)^{2} \text{ uncertainty}}}}{\sqrt{1 - L(n(p_{T} TeV)), in(0.1), in(2.5))^{2} \cdot \sqrt{1 - L(y_{0}, 1, 5)^{2} \text{ uncertainty}}}}{\sqrt{1 - L(n(p_{T} TeV)), in(0.1), in(2.5))^{2} \cdot \sqrt{1 - L(y_{0}, 0, 1)^{2} \text{ uncertainty}}}}}$ $\frac{18}{\sqrt{1 - L(n(p_{T} TeV)), in(0.1), in(2.5)^{2} \cdot \sqrt{1 - L(y_{0}, 0, 2)^{2} \text{ uncertainty}}}}{\sqrt{1 - L(n(p_{T} TeV)), in(0.1), in(2.5)^{2} \cdot \sqrt{1 - L(y_{0}, 0, 2)^{2} \text{ uncertainty}}}}$	14	$L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1)^2}$ uncertainty	$l(x \min \max) = 0$ for $x < \min$
$\frac{L(\ln(p_{T}(\text{TeV})), \ln(0.1), \ln(2.5)) \cdot L(y _{L}, 2, 3) \cdot \text{uncertainty}}{L(\ln(p_{T}(\text{TeV})), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(y _{L}, 1, 5)^{2} \cdot \text{uncertainty}}}{\sqrt{1 - L(\ln(p_{T}(\text{TeV})), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(y _{L}, 1, 5, 3) \cdot \text{uncertainty}}}}{\sqrt{1 - L(\ln(p_{T}(\text{TeV})), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(y _{L}, 1, 5) \cdot \text{uncertainty}}}}{\sqrt{1 - L(\ln(p_{T}(\text{TeV})), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(y _{L}, 1, 3) \cdot \text{uncertainty}}}}{18} \qquad X > \max$		$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 1, 3)$ uncertainty	$L(x, \min, \max) = 0$ for $x < \min$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	$L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 2)^{2}}$ uncertainty	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 2, 3)$ uncertainty	$L(x, \min, \max) = 1$ for
$\frac{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5))^{2} - L(y_{1}, 1.5, 3)^{2} - \ln(etallity)}}{\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5))^{2} \cdot \sqrt{1 - L(y_{1}, 0, 1)^{2} - \ln(etallity)}}}$ 18 $\sqrt{1 - L(\ln(p_{T}[TeV]), \ln(0.1), \ln(2.5))^{2} \cdot L(y_{1}, 1, 3)^{2} - \ln(etallity)}$	16	$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 1.5)^2}$ uncertainty	
$\frac{\sqrt{1 - L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5))^{2}} \cdot L(y , 1, 3) \cdot \text{uncertainty}}{\sqrt{1 - L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5))^{2}} \cdot \sqrt{1 - L(y , 0, 2)^{2}} \cdot \text{uncertainty}}$		$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 1.5, 3)$ uncertainty	$x > \max$
18 $\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 2)^2}$ uncertainty	17	$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 1)^2} \cdot \text{uncertainty}}$	
		$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 1, 3)$ · uncertainty	
$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 2, 3)$ · uncertainty	18	$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 2)^2}$ uncertainty	
		$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 2, 3)$ · uncertainty	

An extra sub-component completes them, such that the sum in quadrature of sub-components equals the original uncertainty

Results: NLOJet++ vs Unfolded Data (8 TeV)

(arXiv:1706.03192)



anti- $k_t R = 0.4$

anti- $k_t R = 0.6$

EW corrections at 13 TeV

- NLO pQCD predictions are corrected for the effects of γ and W[±]/Z interactions at the tree and 1-loop level
- The correction is defined as the ratio

- Matching impurity at reconstructed level (\mathcal{P}_j).
- Solutions between neighbour $p_T(m_{jj})$ bins (A_{ij}) .
- Solution Matching inefficiency at particle-level (\mathcal{E}_i).

$$N_{i}^{ ext{unfolded}} = \sum_{j} N_{j}^{ ext{reco}} \cdot \mathcal{P}_{j} \cdot \mathcal{A}_{ij} \, / \, \mathcal{E}_{i}$$