

Flavour Physics

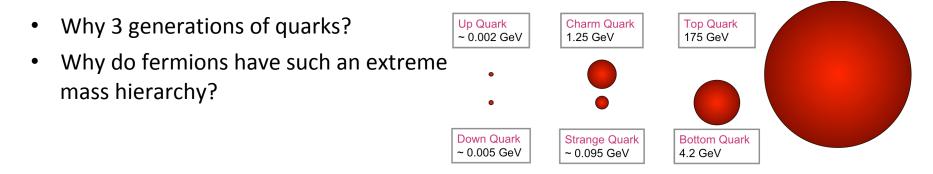
Irina Nasteva

Universidade Federal do Rio de Janeiro

on behalf of the LHCb collaboration, with results from ATLAS and CMS

Outline

Why is flavour physics important?


A selection of recent LHC flavour physics results:

- CP violation in beauty and charm
- Rare decays
- Lepton flavour universality

Why flavour physics?

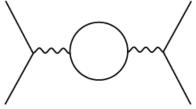
The origin of flavour is one of the big unsolved mysteries in fundamental physics.

The SM describes flavour accurately, but it does not explain:

- What determines the elements of the CKM matrix?
- What is the origin of matter-antimatter asymmetry? SM-level CP violation is insufficient to explain it.

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.9705 - 0.9770 & 0.21 - 0.24 & 0 - 0.014 \\ 0.21 - 0.24 & 0.971 - 0.973 & 0.036 - 0.070 \\ 0 - 0.014 & 0.036 - 0.070 & 0.997 - 0.999 \end{pmatrix}$$

Flavour physics as probe for New Physics

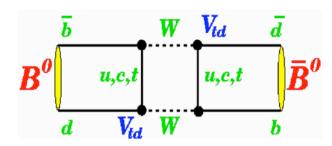

The SM could be a low-energy effective theory of a more fundamental theory at a higher energy scale, introducing new symmetries, dynamics and particles.

NP searches – the energy frontier:

 New particles produced and observed *as real particles* at energy frontier machines (LHC).

NP searches – the intensity frontier:

 New particles appear as virtual particles in loops, leading to observable differences from SM expectations.


BSM theories face many challenges to prove compatible with experimental constraints on flavour observables.

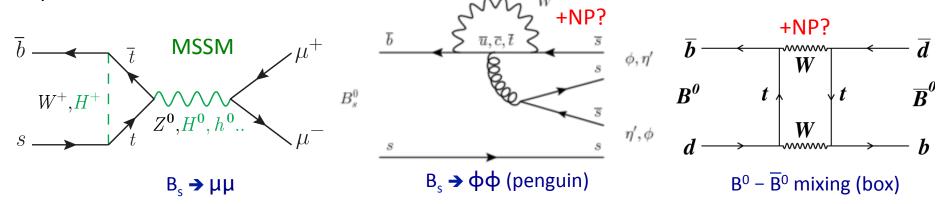
Discovery potential of indirect searches

Neutral B-meson oscillations gave the first evidence for a large top quark mass.

A heavy top appears in the loop. ٠

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration


In summary, the combined evidence of the investigation of B^0 meson pairs, lepton pairs and B^0 meson-lepton events on the Υ (4S) leads to the conclusion that $B^0 - \overline{B}^0$ mixing has been observed and is substantial.

Phys. Lett.	B192,	245	(1987)
-------------	-------	-----	--------

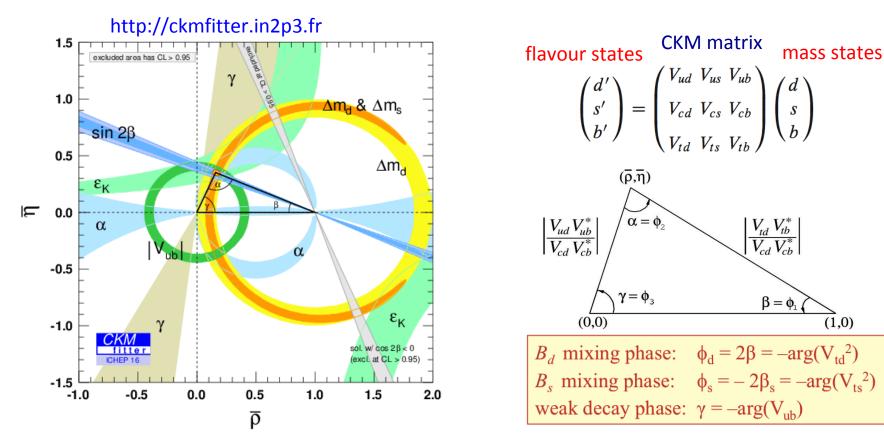
Parameters	Comments	
r>0.09(90%CL)	this experiment	
x>0.44	this experiment	
$B^{1/2} f_{\rm B} \approx f_{\pi} < 160 {\rm MeV}$	B meson (\approx pion) decay constant	
$m_{\rm b}$ < 5 GeV/ c^2	b-quark mass	
$\tau < 1.4 \times 10^{-12} s$	B meson lifetime	
$ V_{td} < 0.018$	Kobayashi-Maskawa matrix element	
$\eta_{\rm OCD} < 0.86$	QCD correction factor ^{a)}	
$m_{\rm t}$ > 50 GeV/ c^2	t quark mass	

Flavour physics as probe for New Physics

Search for deviations from the SM predictions due to new heavy particles in loop processes.

Measure with high precision:

- CP-violating and flavour-changing processes.
- Rare decays of heavy quarks.


Compare to precise SM predictions – need theoretically clean observables. Can look for new symmetries and probe mass scales beyond those accessible in direct production.

CP violation in beauty and charm

See also talks on:

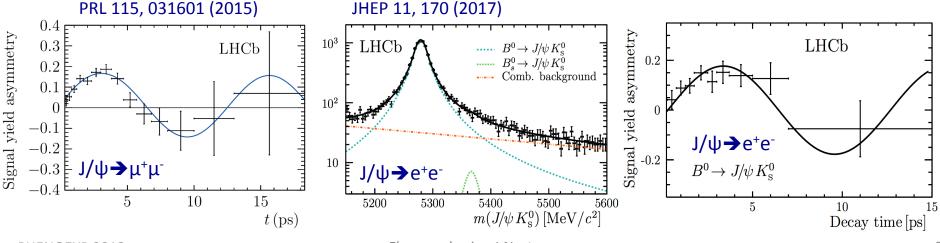
- $D \rightarrow hhh$ amplitude analysis Fernanda Gonçalves
- $B_c \rightarrow hhh decays Leandro de Paula$
- CP violation in $B \rightarrow hhh I.N.$

CP violation – the unitarity triangle

Experimental confirmation of CKM model as dominant source of CP violation.

- Measurements of the sides and angles.
- Any inconsistency will be a sign of New Physics.
- Experimental progress: increased precision.

(1,0)


Measurement of sin(2β)

CP violation due to interference between $B^0-\overline{B}^0$ mixing and b $\rightarrow c\overline{c}s$ transitions.

 $\beta \equiv \arg[-(V_{cd}V_{cb}^*)/(V_{td}V_{tb}^*)]$

- The golden channel is $B^0 \rightarrow J/\psi K_s$.
- Also $B^0 \rightarrow \psi(2s)K_s$ with $J/\psi \rightarrow \mu^+\mu^-(e^+e^-)$, $K_s \rightarrow \pi^+\pi^-$.
- Flavour tagging of B⁰ at production.
- Time-dependent signal yield asymmetry:

$$\mathcal{A}(t) \equiv \frac{\Gamma(\overline{B}{}^{0}(t) \to J/\psi K_{s}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{s}^{0})}{\Gamma(\overline{B}{}^{0}(t) \to J/\psi K_{s}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{s}^{0})} = \frac{S\sin(\Delta m t) - C\cos(\Delta m t)}{\cosh(\frac{\Delta\Gamma t}{2}) + A_{\Delta\Gamma}\sinh(\frac{\Delta\Gamma t}{2})}$$

where S \approx sin(2\beta)

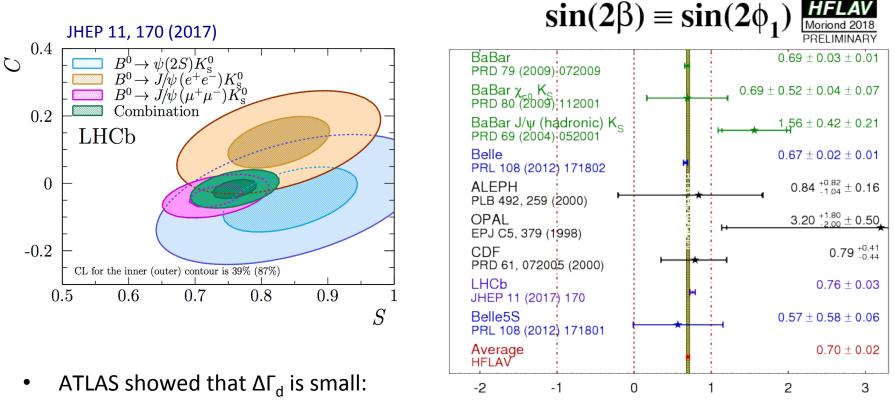
Flavour physics, I.Nasteva

 J/ψ

 $K_{\rm S}$

s(d)

d(s)

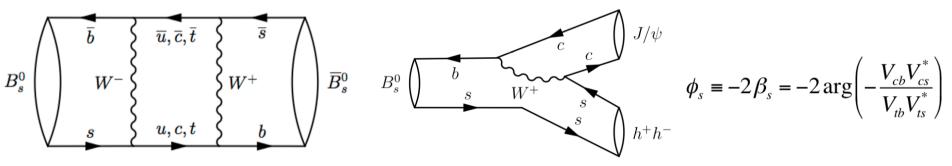

Ь

d(s)

 $B^0_{d(s)}$

Measurement of sin(2β)

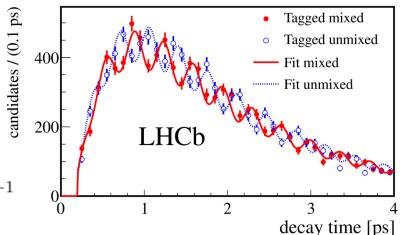
- LHCb average with 3 fb⁻¹ data: $S = sin(2\beta) = 0.760 \pm 0.034$
- Precision comparable to B factories, will surpass them with Run-2 data.
- Consistent with indirect measurements and SM.

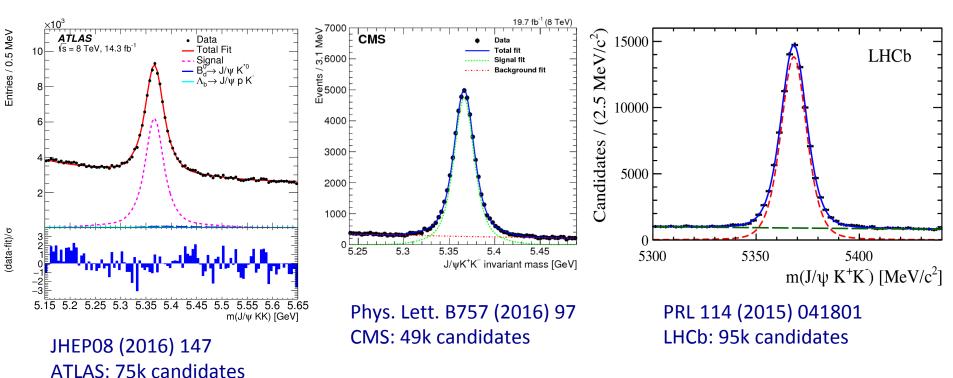


 $\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$

JHEP 06, 081 (2016)

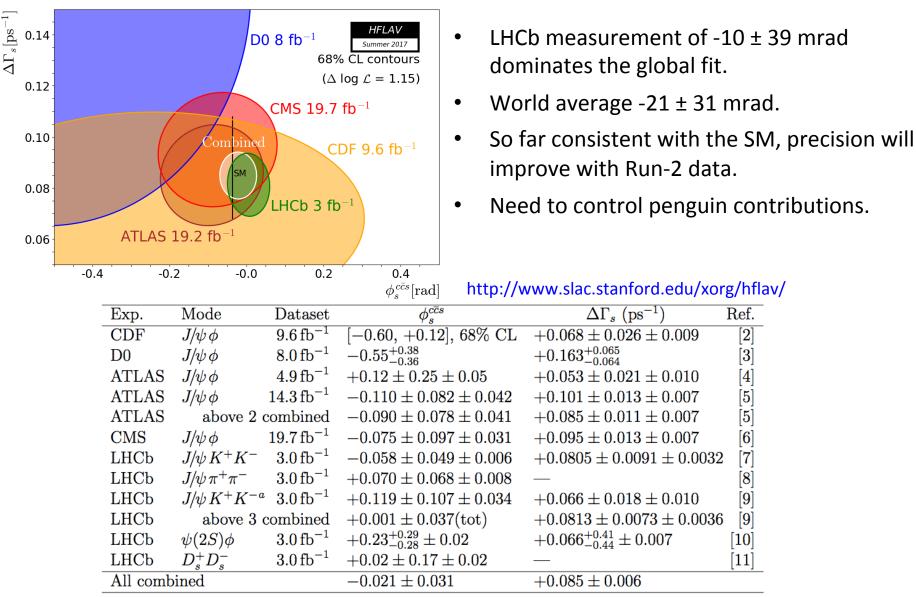
Measurement of ϕ_s


CPV phase in interference between $B_s^0 - \overline{B}_s^0$ mixing and tree-dominated b $\rightarrow c\overline{c}s$ transitions.


- A deviation from the SM prediction could signal NP particles in the mixing loop.
- The golden channel is $B_s^0 \rightarrow J/\psi \phi$.
- Angular analysis to disentangle CP eigenstates in final state with two vectors.
- Requires excellent B tagging and decay time resolution.
- B_s⁰ has fastest oscillations.

 $\Delta m_s = 17.768 \pm 0.023 \text{ (stat)} \pm 0.006 \text{ (syst) } \text{ps}^{-1}$

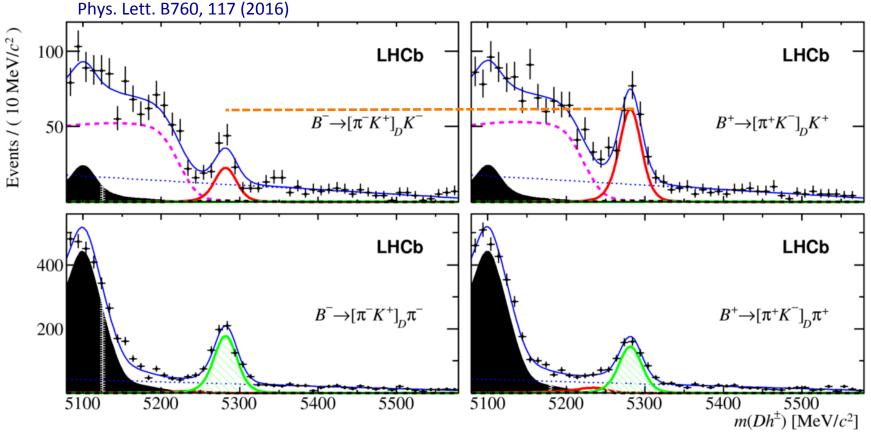
New J. Phys. 15 053021 (2013)


Measurement of ϕ_s

LHC-wide experimental effort:

- All based on Run-1 data.
- Full test of flavour-tagging abilities and detector resolutions.

Measurement of ϕ_s

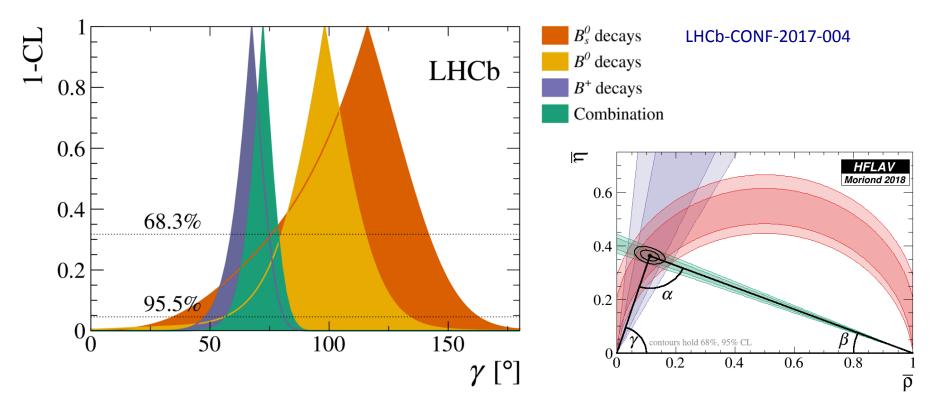


Measurement of γ

- Least well constrained angle in the CKM triangle.
- Clean measurement using $b \rightarrow u$ and $b \rightarrow c$ tree-level transitions, SM only.
- For example, favoured and suppressed "ADS" mode: $B^- \rightarrow D^0(\pi^-K^+)h^-$:

$$\mathcal{A}_{\mathrm{sup}}/\mathcal{A}_{\mathrm{fav}} = r_B^X e^{i(\delta_B^X \pm \gamma)}$$

 $\gamma \equiv \arg \left[-V_{ud} V_{ub}^* / V_{cd} V_{cb}^* \right]$


Flavour physics, I. Nasteva

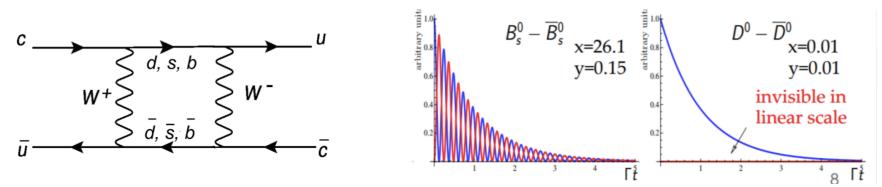
Measurement of y

• LHCb measurement is a combination of many independent analyses:

B decay	D decay	Method	Ref.	Status since last combination [1]
$B^+ \to DK^+$	$D \rightarrow h^+ h^-$	GLW	[16]	Updated to Run 1 + 2 fb^{-1} Run 2
$B^+ \to DK^+$	$D \rightarrow h^+ h^-$	ADS	[17]	As before LHCb-CONF-2017-004
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[17]	As before
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[18]	As before 85 observables and
$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	[19]	As before 37 free parameters
$B^+ \to DK^+$	$D\to K^0_{\rm s}K^+\pi^-$	GLS	[20]	As before
$B^+ \to D^*K^+$	$D \to h^+ h^-$	GLW	[16]	New
$B^+ \to D K^{*+}$	$D \to h^+ h^-$	GLW/ADS	[21]	New
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[22]	As before
$B^0 \to D K^{*0}$	$D \to K^+ \pi^-$	ADS	[23]	As before
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[24]	As before
$B^0 \to DK^{*0}$	$D\to K^0_{\rm S}\pi^+\pi^-$	GGSZ	[25]	As before
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\!\to h^+ h^- \pi^+$	TD	[26]	Updated to 3fb^{-1} Run 1

Measurement of γ

• LHCb reached 5° uncertainty, significantly better than B factories.


$$\gamma = (76.8 \, {}^{+5.1}_{-5.7})^{\circ}$$

• Agrees with prediction from the rest of CKM triangle:

$$\gamma^{\text{indirect}} = (65.3^{+1.0}_{-2.5})^{\circ}$$

CP violation in charm

Measurement of $D^0-\overline{D^0}$ mixing and CP-violation parameters.

• Mass eigenstates are linear combinations of flavour eigenstates:

 $|D_{1,2}
angle=p|D^0
angle\pm q|\overline{D}^0
angle$ • if p ≠ q, CP violation in the mixing.

• Mixing parameters:

$$\begin{aligned} x &= 2(m_2 - m_1)/(\Gamma_1 + \Gamma_2) \\ y &= (\Gamma_2 - \Gamma_1)/(\Gamma_1 + \Gamma_2) \end{aligned}$$

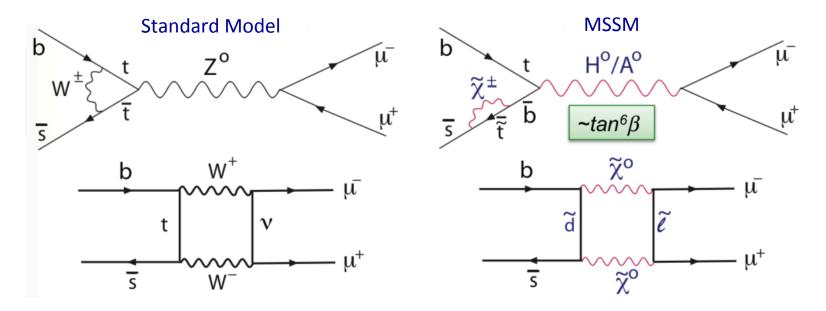
- Negligible CP violation predicted by the SM for charm ($<10^{-3}$ in mixing).
- Measure the CP-averaged decay-time-dependent ratio of wrong-sign ($D^0 \rightarrow K^+\pi^$ from doubly Cabibbo-suppressed and oscillated D^0) to right-sign (Cabibbo-favoured $D^0 \rightarrow K^-\pi^+$) decay rates:

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

CP violation in charm

Measurement of $D^0 - \overline{D^0}$ mixing and CP-violation parameters. LHCb Run-1 and Run-2 sample is largest ever. Phys. Rev. D97 031101 (2018) $\underline{\times 10}^{6}$ 240 ×10² (a) MeV/c^2 Candidates per 0.1 MeV/ c^2 D⁰ $R^{+}[10^{-3}]$ LHCb • Data 25 220 LHCb Data LHCb - Fit 200 Fit (a) (b) ----- Background 180 ---- Background 20 0.1 160 per 140 15 Candidates 120 (b) <u>D</u>⁰ 6 100 10 $R^{-}[10^{-3}]$ 80 177 million 722k 60 CPV allowed 40 right-sign wrong-sign No direct CPV 20----- No CPV 2015 2015 2010 202005 2010 2020 2005 $M(D^0\pi^+)$ [MeV/c²] $M(D^0\pi^+)$ [MeV/ c^2] $[10^{-3}]$ (c)0.2 $x'^2 = (3.9 \pm 2.7) \times 10^{-5}$ Å $y' = (5.28 \pm 0.52) \times 10^{-3}$ -0.2 $R_D = (3.454 \pm 0.031) \times 10^{-3}$ 2 20 6 t/τ

- These results are twice as precise as previous LHCb results.
- No CP violation. $A_D \equiv (R_D^+ R_D^-)/(R_D^+ + R_D^-) = (-0.1 \pm 8.1 \pm 4.2) \times 10^{-3}$

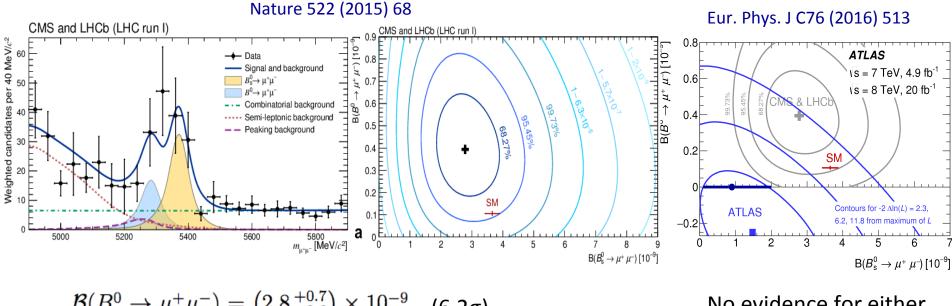

Flavour physics, I.Nasteva

Rare decays

$B_s \rightarrow \mu\mu$ decays

The decay $B_s \rightarrow \mu\mu$ is ultra-rare in the SM and very sensitive to NP contributions.

- SM branching fraction calculated with small uncertainty: (3.65 +- 0.23)x10⁻⁹.
- BSM theories (esp. additional Higgs bosons) predict enhanced rates. PRL 112 (2014) 101801

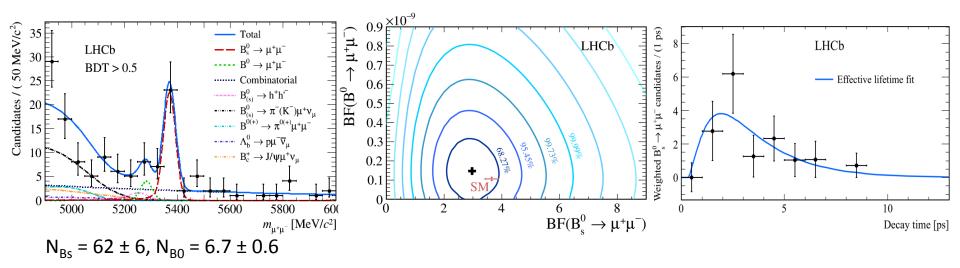


- LHCb found the first evidence of the decay in Run-1. PRL 110 (2013) 021801
- A combined CMS and LHCb analysis obtained a 5σ observation.

Nature 522 (2015) 68

$B_s \rightarrow \mu\mu$ decays

Run-1 combined LHCb + CMS $B_s^0 \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ analysis and ATLAS analysis:


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8 \,{}^{+0.7}_{-0.6}) \times 10^{-9} \quad (6.2\sigma)$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.9 \,{}^{+1.6}_{-1.4}) \times 10^{-10} \quad (3.0\sigma)$$

No evidence for either mode in ATLAS measurement.

- First observation of $B_s^0 \rightarrow \mu\mu$ and evidence of $B^0 \rightarrow \mu\mu$.
- Compatible with the SM at 1.2σ (2.2σ).

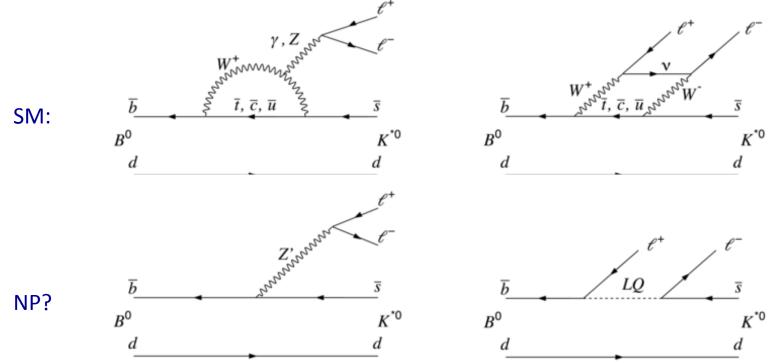
$B_s \rightarrow \mu\mu$ decays

LHCb Run-1 + Run-2 update on $B_s^0 \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ analysis:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \quad (7.8\sigma)$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$$

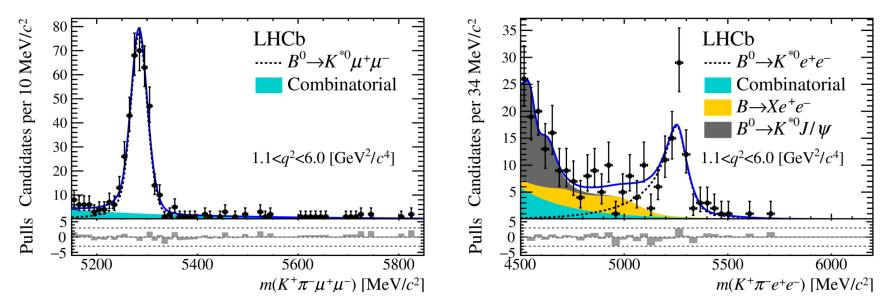
PRL 118 (2017) 191801


- First observation of $B_s^0 \rightarrow \mu\mu$ from a single experiment.
- Compatible with the SM, tighten constraints on NP contributions.
- Effective lifetime fit proof of principle. $\tau(B_s^0 \rightarrow \mu^+\mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

Tests of Lepton Flavour Universality

Lepton flavour universality (LFU)

In the SM, the electroweak couplings of leptons to gauge bosons are independent of their flavour.


- FCNC processes (electroweak loop diagrams such as $b \rightarrow sl^+l^-$) are ideal to test LFU.
- NP particles (Z', LQ, ...) with unequal couplings to leptons can alter rates or angular distributions.

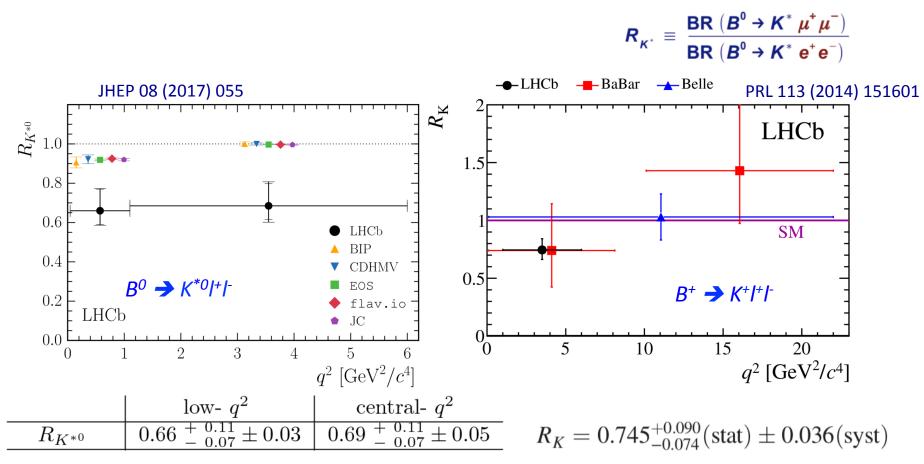
LFU tests in $b \rightarrow sl^+l^-$ transitions

Measure ratios of branching fractions to e/μ for these EW loop transitions:

- Precise SM theoretical predictions (O(10⁻³) R_{K} uncertainty).
- Hadronic form-factor uncertainties cancel in ratios.
- Common selection, double ratios reduce experimental systematics.

The experimental challenge is electron reconstruction:

JHEP 08 (2017) 055


 $\boldsymbol{R}_{\boldsymbol{K}} \equiv \frac{\mathsf{BR}\left(\boldsymbol{B}^{*} \rightarrow \boldsymbol{K}^{*} \boldsymbol{\mu}^{*} \boldsymbol{\mu}^{-}\right)}{\mathsf{BR}\left(\boldsymbol{B}^{*} \rightarrow \boldsymbol{K}^{*} \boldsymbol{e}^{*} \boldsymbol{e}^{-}\right)}$

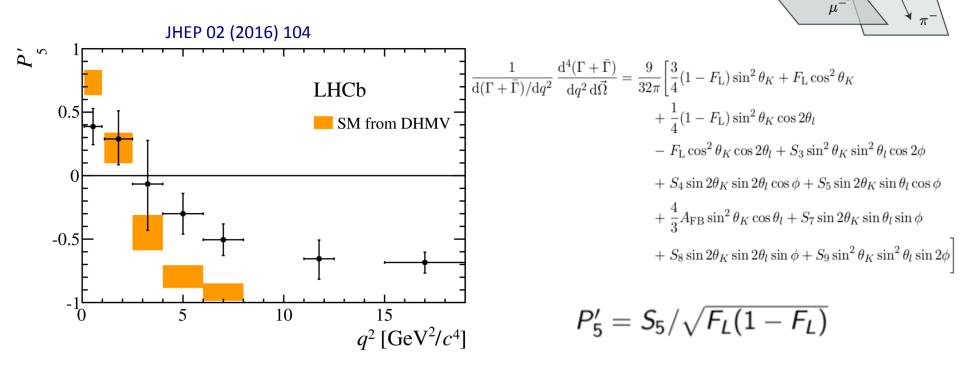
 $\boldsymbol{R}_{\boldsymbol{K}^*} \equiv \frac{\mathsf{BR} \; (\boldsymbol{B}^0 \to \boldsymbol{K}^* \; \boldsymbol{\mu}^* \boldsymbol{\mu}^-)}{\mathsf{BR} \; (\boldsymbol{B}^0 \to \boldsymbol{K}^* \; \boldsymbol{e}^* \boldsymbol{e}^-)}$

• Brehmsstrahlung, lower trigger efficiencies.

LFU tests in $b \rightarrow sl^+l^-$ transitions

 $\boldsymbol{R}_{\boldsymbol{K}} \equiv \frac{\mathsf{BR}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)}{\mathsf{BR}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \mathbf{e}^{+} \mathbf{e}^{-}\right)}$

- Most precise results to date.
- Below the SM predictions at $2.1-2.3\sigma$, $2.4-2.5\sigma$ and 2.6σ .


Measurements of R_{κ} and $R_{\kappa*}$ in bins of $q^2 = m^2(l^+l^-)$:

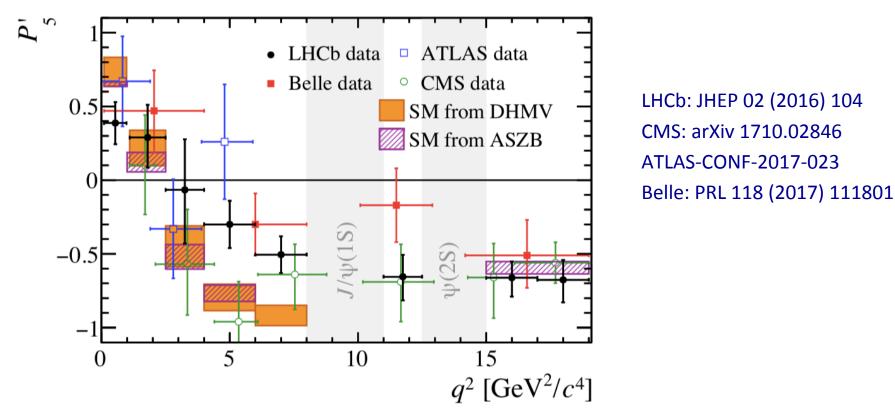
Flavour physics, I.Nasteva

Other $b \rightarrow sl^+l^-$ anomalies

Measure angular observables of $B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$ decays in bins of $q^2 = m^2(l^+l^-)$:

- Three decay angles, full angular analysis.
- Angular distribution described by 8 coefficients.
- Optimised observables with reduced theoretical uncertainties.

• Observables consistent with SM, except P'_5 which differs by 3.4 σ in two bins.

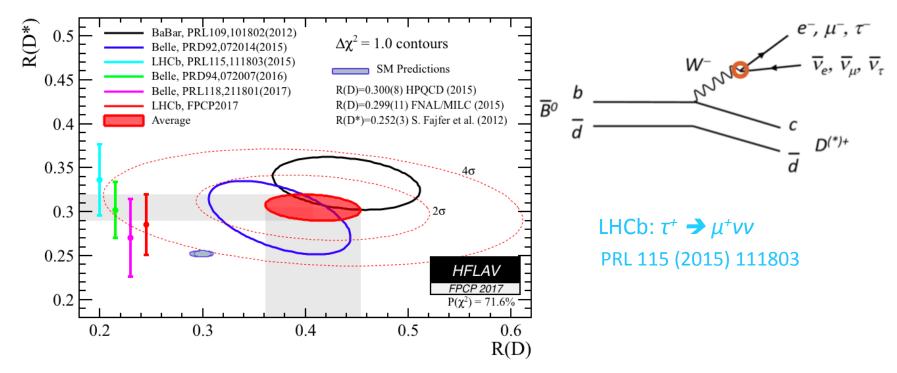

 B_d^0

 θ_K

Other $b \rightarrow sl^+l^-$ anomalies

Measure angular observables of $B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$ decays in bins of $q^2 = m^2(l^+l^-)$:

• CMS, ATLAS and Belle also measure P'₅.

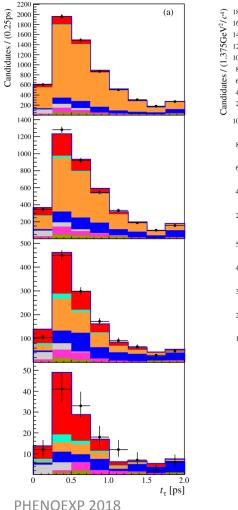

• The shift could be caused by a contribution from a new vector particle or by an unexpectedly large hadronic effect.

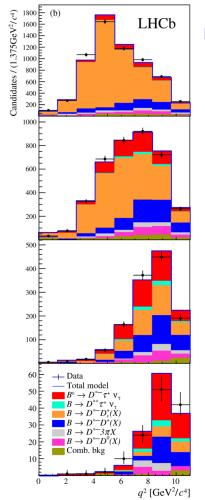
 $P_{5}' = S_{5}/\sqrt{F_{L}(1-F_{L})}$

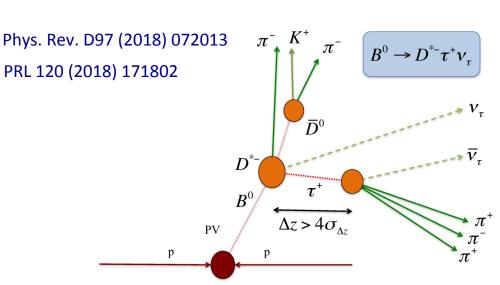
LFU tests in semileptonic b decays

Measure ratios of branching fractions R(D^(*)):

- $\boldsymbol{R}(\boldsymbol{D}^{(*)}) \equiv \frac{\boldsymbol{\mathsf{BR}}(\overline{\boldsymbol{B}}^{0} \rightarrow \boldsymbol{D}^{(*)+} \boldsymbol{\tau}^{-} \overline{\boldsymbol{\nu}}_{\boldsymbol{\tau}})}{\boldsymbol{\mathsf{BR}}(\overline{\boldsymbol{B}}^{0} \rightarrow \boldsymbol{D}^{(*)+} \boldsymbol{\mu}^{-} \overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}})}$
- Tree-level transitions with large BR, precise predictions.
- Experimentally challenging: multiple neutrinos from W and τ decays.

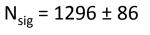



- Enhanced in models with extended Higgs, LQ or extended gauge sector.
- Long-standing discrepancy with the SM at 4σ (Belle, BaBar, LHCb).


R(D^{*}) from three-prong τ decays

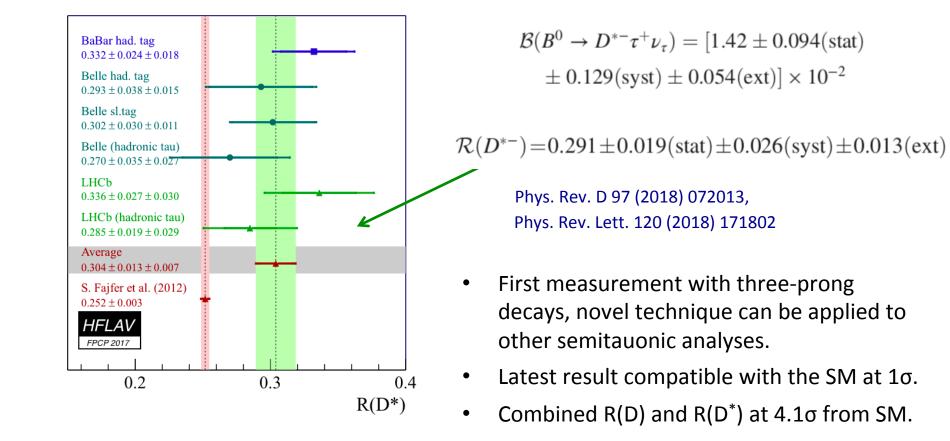
Measure ratios of branching fractions $R(D^{(*)})$:

LHCb measurement using $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) v$ decays.



 $\boldsymbol{R}(\boldsymbol{D}^{(*)}) \equiv \frac{\boldsymbol{\mathsf{BR}}(\overline{\boldsymbol{B}}^{0} \to \boldsymbol{D}^{(*)+} \boldsymbol{\tau}^{-} \overline{\boldsymbol{\nu}}_{\boldsymbol{\tau}})}{\boldsymbol{\mathsf{BR}}(\overline{\boldsymbol{B}}^{0} \to \boldsymbol{D}^{(*)+} \boldsymbol{\mu}^{-} \overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}})}$

- Large background from $B^0 \rightarrow D^{*+}\pi^+\pi^-\pi^+X$ decays, suppressed using τ decay length.
- 3D binned fit in q_2 , t_r and BDT output.



Flavour physics, I.Nasteva

R(D^{*}) from three-prong τ decays

Measure ratios of branching fractions R(D^(*)):

• LHCb measurement using $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) v$ decays.

 $\boldsymbol{R}(\boldsymbol{D}^{(*)}) \equiv \frac{\mathsf{B}\mathsf{R}(\overline{\boldsymbol{B}}^{0} \to \boldsymbol{D}^{(*)+} \boldsymbol{\tau}^{-} \overline{\boldsymbol{\nu}}_{\tau})}{\mathsf{B}\mathsf{R}(\overline{\boldsymbol{B}}^{0} \to \boldsymbol{D}^{(*)+} \boldsymbol{\mu}^{-} \overline{\boldsymbol{\nu}}_{\mu})}$

Conclusions

- Flavour physics plays a key role in searching for New Physics.
- The experimental progress on precision measurements of flavour observables provides stringent tests of the SM and challenges to BSM theories.
 - CKM triangle and CP violation measured with improved precision agree with the SM so far.
 - \blacktriangleright Rare $B_{(s)}^{0} \rightarrow \mu\mu$ decays tighten the constraints on BSM models.
 - Several anomalies in Lepton Flavour Universality tests diverge from the SM.
- Run-2 data are being analysed and will help confirm or refute some of these hints.
- Upgrades ahead + Belle II.