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§ Understand better how spatial resolution of pad/strip 
structures depends on 
•  The geometrical properties (width, shape) of the signal 
•  The type of readout (binary / analog) 
•  The noise 

 
§ What I will show is the result of many years of ‘playing 

around’ with the mathematics. 
•  I never had the time / patience to write a paper so far… 

§ Warning: 
• We need to do some math, but it’s all ‚classical‘ stuff 

Goal of the Talk 
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1.  Warm-up: 
•  Resolution with ‘binary’ readout 
•  Optimal signal width 

2.  Error of Center-of-Gravity reconstruction: 
• When do we need a fit? 

3.  Influence of noise on spatial resolution 
• Resolution as a function of noise (quantitatively) 
• Higher Moments of noise distribution 
• Correlated Noise 
•  2D structures 

4.  Error when doing ‘Eta-reconstruction’ 
•  Search for ‘best’ response function 

 

Overview 

© P. Fischer, ziti, Uni Heidelberg, Seite 3 HighRR Seminar 18.4.2018: Spatial Resolution 



BINARY READOUT OF BOX SIGNALS 



§ Consider very narrow signal on a strip structure 
§ → Only one strip is hit → Binary ‘yes/no’ - readout 
§ Reconstructed position = strip center. Error = offset in strip. 

§ Sigma of Error: 

Spatial Resolution of Narrow Signals 
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§ When 2 strips are hit → reconstruct at edge → small error 
§ Signal sharing is GOOD 

§ Consider ‘Box’ Signals of width b for simplicity.  

Resolution with Wider Signals (‘Binary’ Readout!) 
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Resolution vs. (Box) Signal Width 
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§ Minimum Error for b = p/2.  Error becomes half: s = ½ p/√12 
§ We then have 50% single and 50% double hits, 

i.e. an average ‘cluster size’ of 1.5 
§ Signals of Width = Pitch are stupid: We always fire 2 strips! 



§ So far, our detector only provides a binary yes/no signal per 
strip 

§ Obviously we can do better if we have the analogue signal 
amplitude 
•  But this is MUCH more effort / data 
•  Is it worth it ? 

§ How do we exploit the analogue information ?  

Adding Amplitude Information 
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FIT Centre of 
Gravity (COG) 

Neural 
Net … 

SIMPLE 



CENTER-OF-GRAVITY RECONSTRUCTION: 
WHEN IS IT SUFFICIENT   - OR - 
WHEN DO WE NEED A FIT? 



§ A 1D signal with (spatial) shape f(x) falls onto a strip 
structure with pitch a 
• We assume ∫f(x)dx = 1 and f(x) symmetric. 

§ This generates (analogue) signals on several strips. 
§ We assume for now that noise = 0. 
§ Question: 

What is the reconstruction error for CoG reconstruction? 
• More precisely: Error for a single event? Average error? Sigma? 

 
§ We expect the answer to depend on 

•  signal shape 
•  Strip pitch a 
•  signal position (for single events) 

The question: 
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x 
xc 



§ The following calculation involves partial integrals over 
arbitrary function. 

§ Normally we must give up soon analytically (consider 
Gaussians..) 

§ But it turns out that we can go quite a way… 

§ Maybe showing the derivation would not really be 
necessary, but I like the fact that so many ‘simple’ aspects 
of basic Analysis show up… 

Remark 
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1. Signal on Strips 
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x 

xc 

This is the signal in strip 
m when the charge cloud 

is centered around xc  

We assume the 
signal on a strip is 
the integral of f(x) 

Strip centers 
are at m·a 

Box of width a 
centered at m·a-xc 

0 



2. Reconstructed Position 
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xrek ? 

S0 S1 

Staircase = g(x) 

position reconstructed 
by CoG 

(normalized signal!) 

Signal on 
Strip m 

Position of 
Strip m 



3. Divide Staircase in sym. / antisym. parts 
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0 a 2a -2a -a 

xc 

0 a 2a -2a -a 

0 a 2a -2a -a 

g(x)  

g(-x)  NB: this is only valid for 

a-2xc >0, i.e. xc < a/2. 

This will be sufficient.  



§  Integral of gantisym(x) is zero because f is assumed symmetric 
§ We are left with 

§ To solve this, move to Fourier Space with 

§ We can use                                                  and 
(for symmetrical a, b)  

4. Simplify the integrals. Move to Fourier Space 
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Write Sum of Boxes 
as convolution of a 

single Box with 
Dirac Comb 



5. Get rid of the Integral 
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sinc 

This is again a 
Dirac Comb, i.e. a 
sum of peaks at 

distances 1/a 

integral over k can 
be carried out. 

The sum from the  
comb is left over 



6. Use Symmetry, Simplify the Sin() function 
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Use symmetry 
m ⇔ -m. 

Treat m=0: 
~f(0) = 1, 

Sin(m k)/m → k  

Center position 
xc shows up ! 



PUH….. 



§ For very narrow f(x), f(x) → Dirac(x) and therefore                   
so that 

 
 

§ This is the Fourier Series of a Saw-Tooth, as expected! 

A First Check 
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xc 

Error     xerr 

a 



§ For a box of width a,                          is zero for m∈N. 
→ reconstruction is perfect. Same for width = multiple of a.  

Check with f(x) = Box 
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xerr 

xc 

w= 0.1 a 

w= 0.2 a 

w= 0.5 a 

w= 1.0 a 

w= 1.2 a f(x) 

x 



§ Error already very small for σ = 0.5a 

Check with Gaussians 
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xerr 

xc 

σ = 0.01 a 

σ = 0.1 a 

σ = 0.2 a 

σ = 0.5 a 



Going Further: Sigma of xerr? 
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sin() are 
orthorgonal! 



§ For very narrow signals, we have again                  so that 
 
 

                                                         as expected…. 

•   This is probably the most complicated way to get the 1/12… 

Another Check 

© P. Fischer, ziti, Uni Heidelberg, Seite 23 HighRR Seminar 18.4.2018: Spatial Resolution 

π2/6 



f(x) = Gaussian(x)  or  Box(x) 
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§ For a Gaussian signal with width σ 
 
 
 
 
we get  

§ For a Box of width s·a 
 
 
 
 
 
which is zero for integer s thanks to Σ(1/n4) = π4/90.. 



The result ‘Error ≈ 0 for FWHM ≈ a’ can be found for many 
pulse shapes. We knew this… but now we know for sure… 

Plot this for f(x) = Gauss(x) 
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For fun: Slope is 
 
 
  

Error becomes 
negligible for 
σ ≈ 0.4 a, or  
FWHM ≈ a 



§ Error is zero for integer box width. 
§ Behavior in-between is not trivial (see next slide)… 

Plot this for f(x) = Box(x) 
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width / a 



1/3 

§ Why does the error → 0 for wider Gauss while it is ≠ 0 also 
for wide boxes? 

§ We consider an example case: 
a = 1, b = 1.5, xc = 0.25 

 
•  The central part has weight 2/3 and position 0 
•  The right part has weight 1/3 and position 1 
→ reconstructed position is 1/3 and NOT 1/4 

§ This shows: the ‘central parts’ of the box carry no 
information, the edges are badly assigned to bins 

(Understanding the BOX-Behavior) 
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0 1/2 -1/2 1 

1 

2/3 

1/3 

Box Signal 
with area 1 

0 1/2 -1/2 1 

2/3 
  Integration / 

Binning 



§ When do we need a fit ? 

§ We ONLY need a fit when the signal is more narrow than 
the strips. 
•  For a more quantitative assessment, use the formulae derived 

above… 

§ My impression is that people fit too much… 

The answer to our question 
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LIMIT OF SPATIAL RESOLUTION FROM NOISE 



§ How is spatial resolution degraded by noise? 

§ We all ‘know’                                       .                               
 
This states, that the resolution degrades with noise ‘linearly 
to first order’. 

§ The proportionality κ is empirical. We want to calculate it 

§ We also want to check what happens with correlated noise 
§ We want to see what happens to higher order 

• What is this here? It is the distribution of the noise… 

§ We assume we can reconstruct with CoG (more later…) 
§ We restrict on a 1D treatment, but 2D is straight forward 

The Question 
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§ A Signal at     is distributed over N strips at positions  
§ Signal on i-th strip is 

§ The sum of all signals shall be normalized to 1 (‘trivial’): 

§ Assume we can perfectly reconstruct the position as center 
of gravity: 

 

 
§ Now assume noise      on all strips → signals are Si+ni 

§ The reconstructed position is: 

1. Write down xrek with noise 
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1

2



§ This becomes (Taylor Expansion of Denominator): 

§ The reconstruction error is: 

§ We need the standard deviation: 

2. Assume noise is small. Get the standard dev. 
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Average error is zero! We need to average over 
- ALL possible positions 
- ALL noises 



3. Do the averaging 
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For uncorrelated 
noise 
 
 

3
This is the proportionality 

factor κ2 we are looking for! 

§  If we chose the origin such that 
 
 
 
this simplifies to: 



§ Consider two strips at x1 = -a/2 and x2 = +a/2   (N = 2) 
§ Signals for a hit at x are 

§         ,        and         are fulfilled: 
 
S1 + S2 = 1;      x1 S1 + x2 S2 = x;      x1 + x2 = 0 

§ We get 

§ Or 

§ For σn = 0.1 (Signal/Noise = 10), resolution = 8% ⋅ a 
§ Resolution is better than optimal binary readout for S/N>5.6 

Example: Strips 
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1 2 3



§ For FULLY correlated noise, ni == nj and 

§ We get 

§ For the strip example 
 
                  σerr = a σn / √3 = 0.57 a σn  (instead of 0.816..) 

§ Correlated noise is less harmful than ‘normal’ noise 
§ Note: For mixed noise, superimpose both components 
§ Note: If the Amplitude of the signal is KNOWN (X-ray), 

noise becomes correlated and resolution improves! 

Correlated Noise ? 
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§ Noise can have different distributions. 
§ They have different higher moments: 

§ They are 

§ We need then higher order correlations (not trivial..): 

Higher Orders (in noise) 

© P. Fischer, ziti, Uni Heidelberg, Seite 36 HighRR Seminar 18.4.2018: Spatial Resolution 



§ Repeating the derivation yields 
 

  
 with 

 
§ Only the correction depends on the ‘type’ (shape) of noise. 
§ NOTE: 

•  For small noise, there is no need to simulate Gaussian noise 
• Randomly adding or subtracting ± σn has the same effect! 

Higher Orders 
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Previous result 

Correction 



• Reconstruction for Gauss noise fails completely in few cases 
due to very high noise values 

Is this true? → Small Monte Carlo: Error vs. Noise 
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Noise: 2 peaks 
Red: Simulation 
Blue: Linear Theory 
Green: higher order 

Noise: Box 
Red: Simulation 
Blue: Linear Theory 
Green: higher order 

Noise: Gauss 
Red: Simulation 
Blue: Linear Theory 
Green: higher order 



§ Can be treated similarly 
§ Observations: 

•  Small number of electrodes is good 
• Well confined acceptance is good (‘circle’) 

 
§ Hexagons are best (least sensitive to noise!) 

2D Structures 
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BACK TO GOG 
NOW WITH NOISE 



§ Resolution for small σ is bad → better make f(x) wide 

§ BUT: Summing up many strips (large N) increases noise 

§ Must chose N small but such that reconstruction is ‘just’ ok. 
• Obviously N ~ σ

§ The choice is fairly arbitrary 
§ And: 

•  In real system, there is often a threshold (hits below this are not 
read out) 

•  The reconstructed amplitude is wrong (signals below threshold 
are lost) 

•  Broken pixels need special treatment 

Problems with Centroid 
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§ Many possibilities… I do not go in details 

§ The optimum signal width is still close to FWHM = a! 

Monte Carlo Simulation  
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ETA FUNCTION 



§ Often the Signals Distribution function (e.g. on 2 strips) is 
not linear. 

§ This is related to the ‘famous’ eta-function.  

 
§ The position then cannot be calculated by GoG, but by 

using the inverse function (or the ‘eta’-lookup table) 
§ Question: How does resolution depend on f(x)? 

Motivation 
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Linear Charge Sharing Arbitrary function 



§ The signals on the two strips shall be 
 
 
 
(we assume no signal is lost, i.e. we require S1+S2 = Q  

§ We require 
•  f(x) is strictly monotonic  (obvious) 
•  f(x) shall be symmetric in x  (may not always be the case)  

§ Obviously 

1D Case: Reconstruction with Inverse Function 
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Adding Noise 
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§ With Noise on S1 and S2 we get 

Add noise 

Taylor (as before) 

1st order in noise 

Taylor Series for f-1 around f(x) 

A ‘forgotten’ math theorem: 
The derivative of the inverse 
function is the inverse of the 

derivative 



§ To get 

§ we average first over noise. We get 

• Coefficients depend on the shape of the response function 
•  They are small where the response function is steep (obvious..) 
•  Vice versa: Flat parts in eta are bad. 

§ For uncorrelated noise, only the first term matters  

Sigma – Averaging over Noise 
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Average over 
position 



§ What does this mean for linear interpolation, f(x) = x+0.5 ? 
§ Let us first look at the position dependent error 

§ This is NOT constant. It doubles at the edges !!! 

§ The average error is  

   as before. 
 

Back to linear Interpolation  
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(s. page 30) 



§ Very exciting: Can we find a f(x) such that the integral is 
better than with linear interpolation 
•  Probably not (?) But let’s see… 

Finding New Distribution functions  
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§ Easier: Can we find a distribution function so that the error 
is independent of position?  

§ One line of Mathematica is enough: 

The average σ2 is 0.643, which is (a little bit) better than 2/3=0.66 !! 

We found a distribution which is better than linear interpolation! 
(it is less noise sensitive) 



§ Are there better functions??? 

Better!  (but just a little…) 
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§ Basic Algebra is fun….. 

§ CoG is ‘perfect’ as soon as signal width >≈ strip width 
§ Wider (too wide) signals are more sensitive to noise 
§  Ideal κ for strips is 0.816 
§ Analogue readout for S/N<6 is useless. 
§ Noise shape (distribution) does not matter for S/N > 10 
§ Correlated noise is less harmful 
§ Hexagons have better res. and are less sensitive to noise 
§ Linear interpolation has more error at the edges 
§ There is a better reconstruction function than linear 

•  but the difference is negligible…. 
•  I did not find better so far… 

Summary: What did we learn ? 
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Thank you for your attention! 
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