

Spatial Resolution of Pad/Strip Structures

Peter Fischer Heidelberg University

HighRR Seminar 18.4.2018: Spatial Resolution

Goal of the Talk

- Understand better how spatial resolution of pad/strip structures depends on
 - The geometrical properties (width, shape) of the signal
 - The type of readout (binary / analog)
 - The noise

- What I will show is the result of many years of 'playing around' with the mathematics.
 - I never had the time / patience to write a paper so far...
- Warning:
 - We need to do some math, but it's all ,classical' stuff

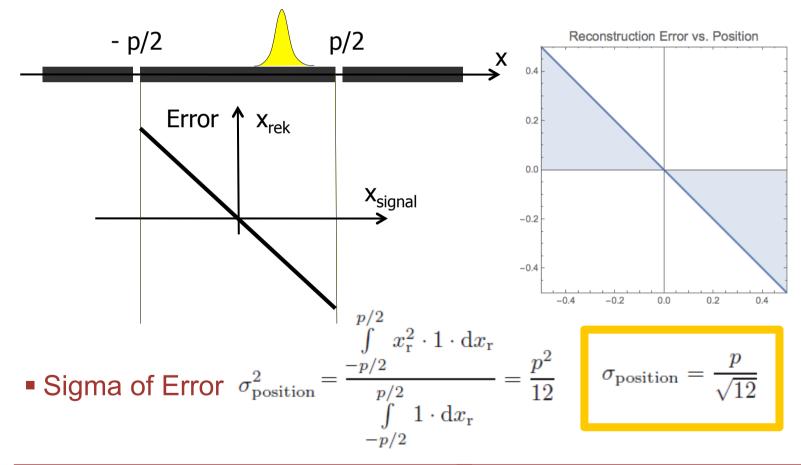
- 1. Warm-up:
 - Resolution with 'binary' readout
 - Optimal signal width
- 2. Error of Center-of-Gravity reconstruction:
 - When do we need a fit?
- 3. Influence of noise on spatial resolution
 - Resolution as a function of noise (quantitatively)
 - Higher Moments of noise distribution
 - Correlated Noise
 - 2D structures
- 4. Error when doing 'Eta-reconstruction'
 - Search for 'best' response function

HighRR Seminar 18.4.2018: Spatial Resolution

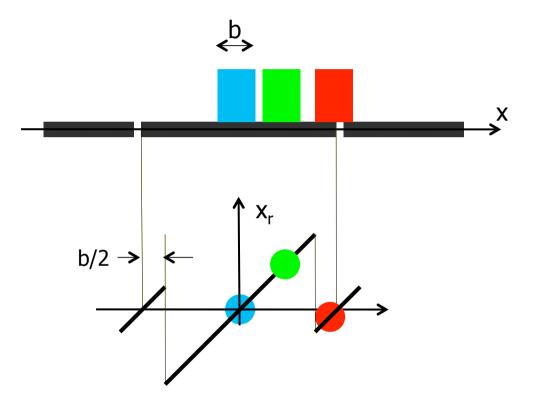
BINARY READOUT OF BOX SIGNALS

Spatial Resolution of Narrow Signals

- Consider very narrow signal on a strip structure
- $\blacksquare \rightarrow$ Only **one** strip is hit \rightarrow Binary 'yes/no' readout
- Reconstructed position = strip center. Error = offset in strip.



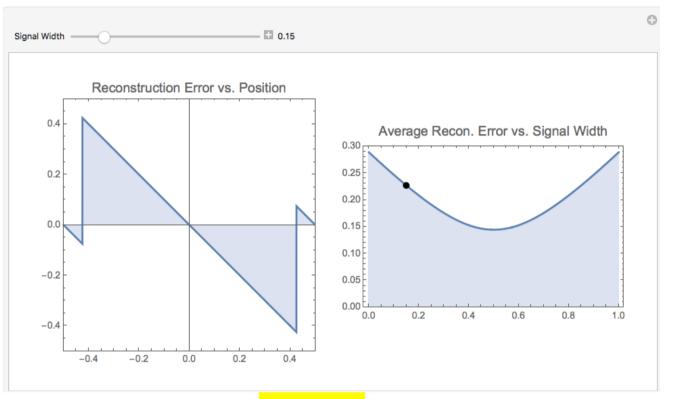
Consider 'Box' Signals of width b for simplicity.



When 2 strips are hit → reconstruct at edge → small error
Signal sharing is GOOD

HighRR Seminar 18.4.2018: Spatial Resolution

Resolution vs. (Box) Signal Width

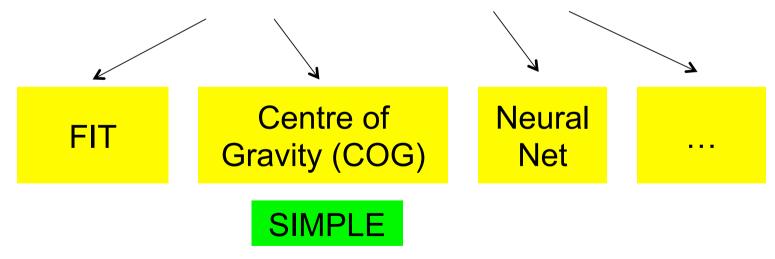


- Minimum Error for b = p/2. Error becomes half: $s = \frac{1}{2} p/\sqrt{12}$
- We then have 50% single and 50% double hits, i.e. an average 'cluster size' of 1.5
- Signals of Width = Pitch are stupid: We always fire 2 strips!

Adding Amplitude Information

- So far, our detector only provides a binary yes/no signal per strip
- Obviously we can do better if we have the analogue signal amplitude
 - But this is MUCH more effort / data
 - Is it worth it ?

• How do we exploit the analogue information ?



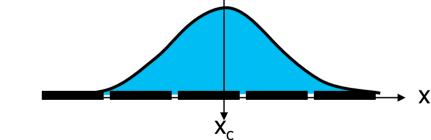
CENTER-OF-GRAVITY RECONSTRUCTION: WHEN IS IT SUFFICIENT - OR -WHEN DO WE NEED A FIT?

The question:

- A 1D signal with (spatial) shape f(x) falls onto a strip structure with pitch a
 - We assume $\int f(x) dx = 1$ and f(x) symmetric.
- This generates (analogue) signals on several strips.
- We assume for now that **noise = 0**.
- Question:

What is the reconstruction error for CoG reconstruction?

• More precisely: Error for a single event? Average error? Sigma?

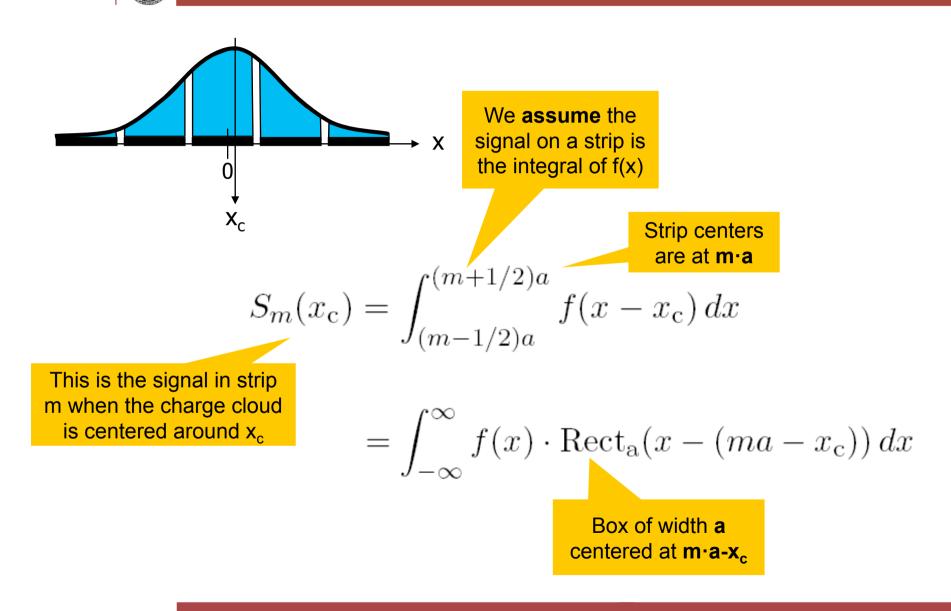


- We expect the answer to depend on
 - signal shape
 - Strip pitch a
 - signal position (for single events)

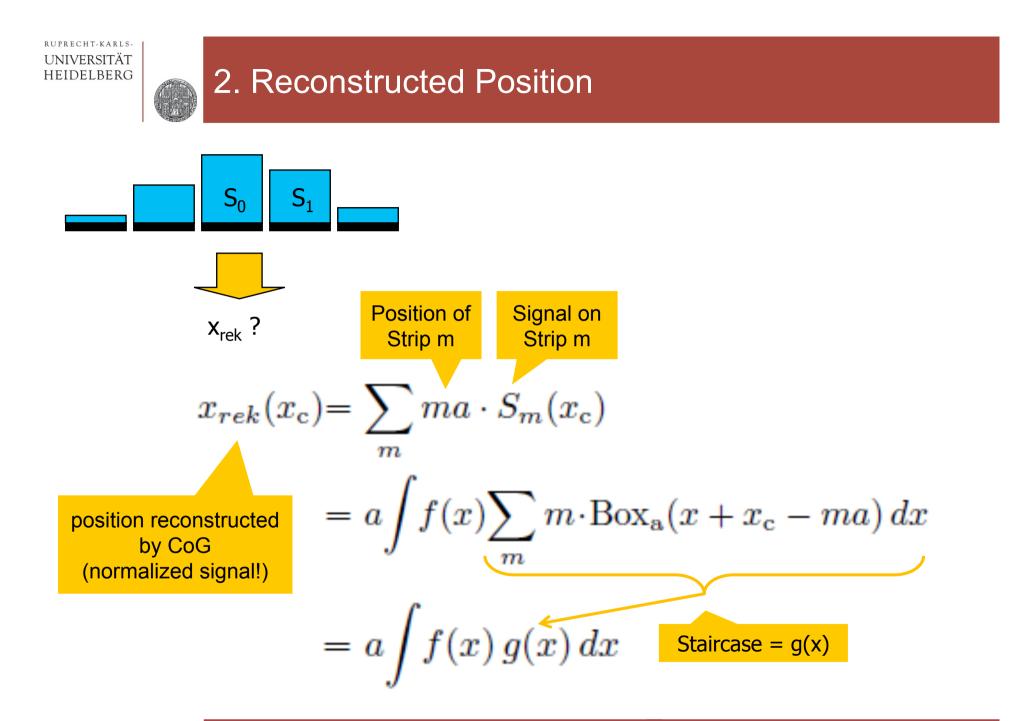
- The following calculation involves partial integrals over arbitrary function.
- Normally we must give up soon analytically (consider Gaussians..)
- But it turns out that we can go quite a way...

 Maybe showing the derivation would not really be necessary, but I like the fact that so many 'simple' aspects of basic Analysis show up...

1. Signal on Strips

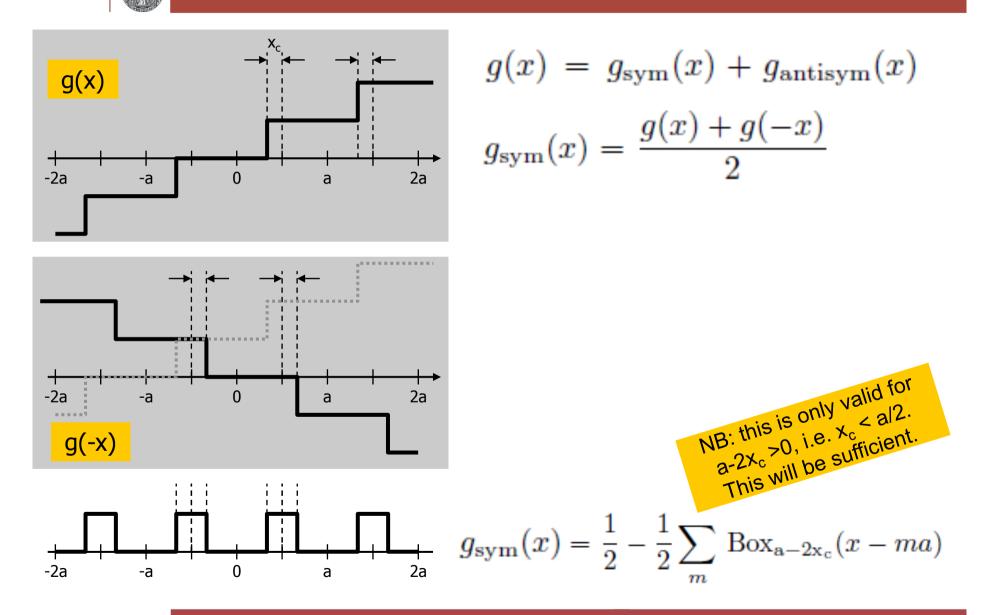


HighRR Seminar 18.4.2018: Spatial Resolution



HighRR Seminar 18.4.2018: Spatial Resolution

3. Divide Staircase in sym. / antisym. parts



HighRR Seminar 18.4.2018: Spatial Resolution

4. Simplify the integrals. Move to Fourier Space

- Integral of g_{antisym}(x) is zero because f is assumed symmetric
- We are left with

$$\begin{aligned} x_{rek}(x_{c}) &= a \int f(x) g_{sym}(x) dx \\ &= \frac{a}{2} - \frac{a}{2} \int f(x) \sum_{m} \operatorname{Box}_{a-2x_{c}}(x - ma) dx \\ &= \frac{a}{2} - \frac{a}{2} \int f(x) \left[\operatorname{Box}_{a-2x_{c}}(x) \star \operatorname{Comb}_{a}(x) \right] dx. \end{aligned}$$

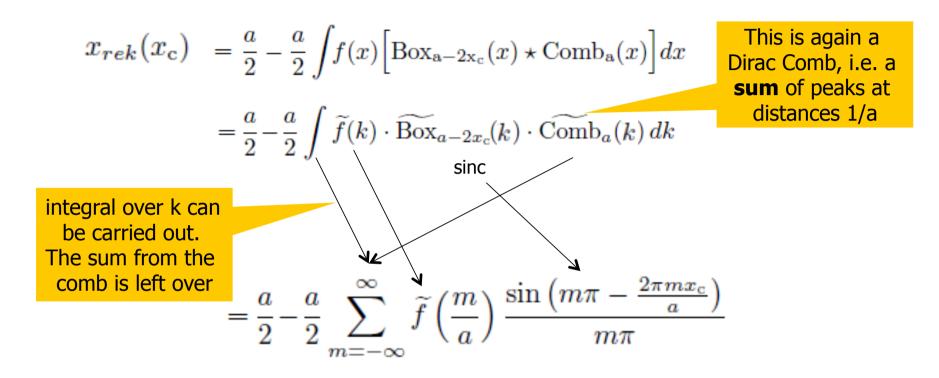
To solve this, move to Fourier Space with

$$\widetilde{f}(k) := \int f(x) e^{-2\pi i k x} dx$$

• We can use $\int a(x) b(x) dx = \int \tilde{a}(k) \tilde{b}(k) dk$ and $\tilde{a \star b} = \tilde{a} \cdot \tilde{b}$ (for symmetrical a, b)

Write Sum of Boxes

5. Get rid of the Integral



6. Use Symmetry, Simplify the Sin() function

HighRR Seminar 18.4.2018: Spatial Resolution

Рин.....

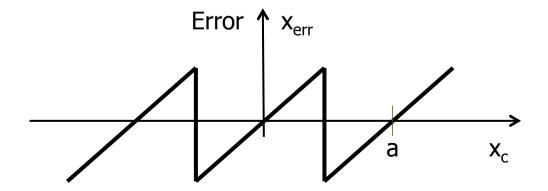
A First Check

$$\boldsymbol{x_{err}(x_c)} = \frac{a}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^m}{m} \tilde{f}\left(\frac{m}{a}\right) \sin\left(\frac{2\pi m x_c}{a}\right)$$

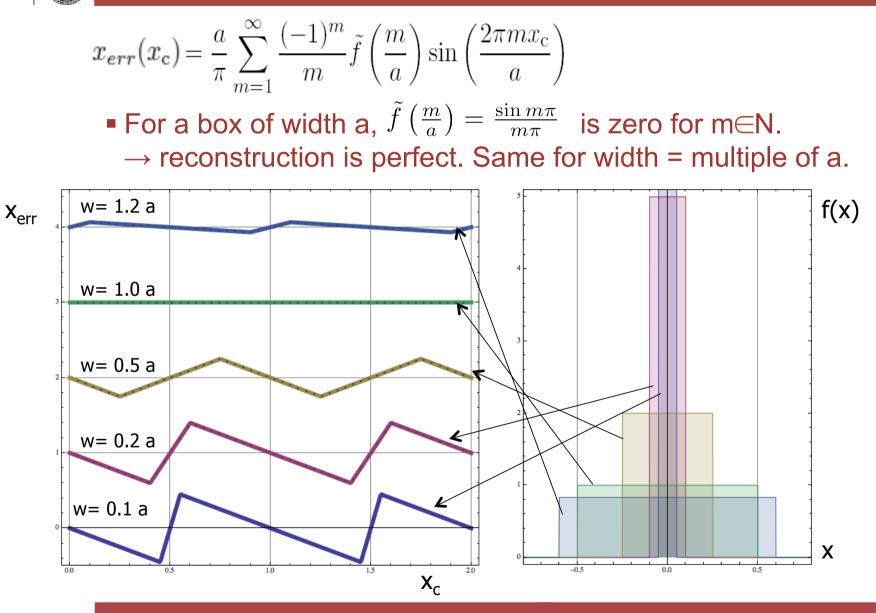
• For very narrow f(x), $f(x) \rightarrow Dirac(x)$ and therefore $\tilde{f}(k) \rightarrow 1$ so that

$$x_{err}(x_{c}) = \frac{a}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \sin\left(m\pi \frac{2x_{c}}{a}\right)$$

This is the Fourier Series of a Saw-Tooth, as expected!

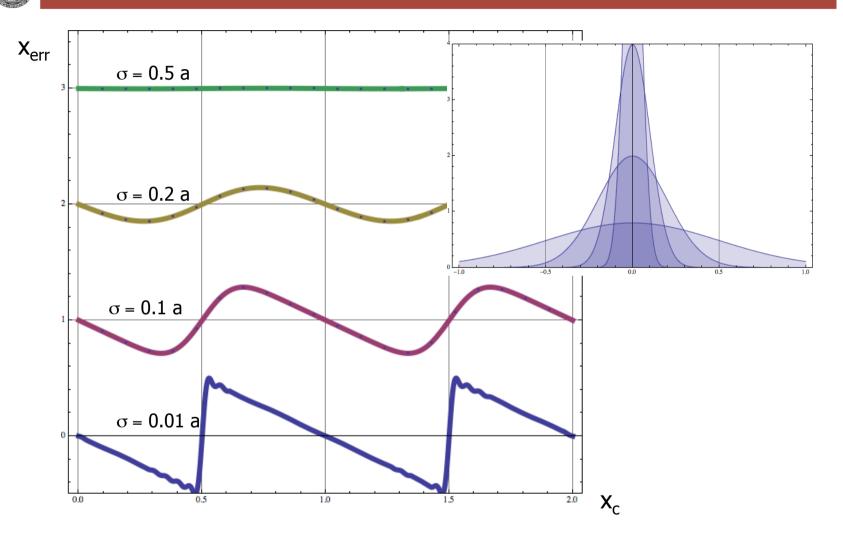


Check with f(x) = Box



HighRR Seminar 18.4.2018: Spatial Resolution

Check with Gaussians

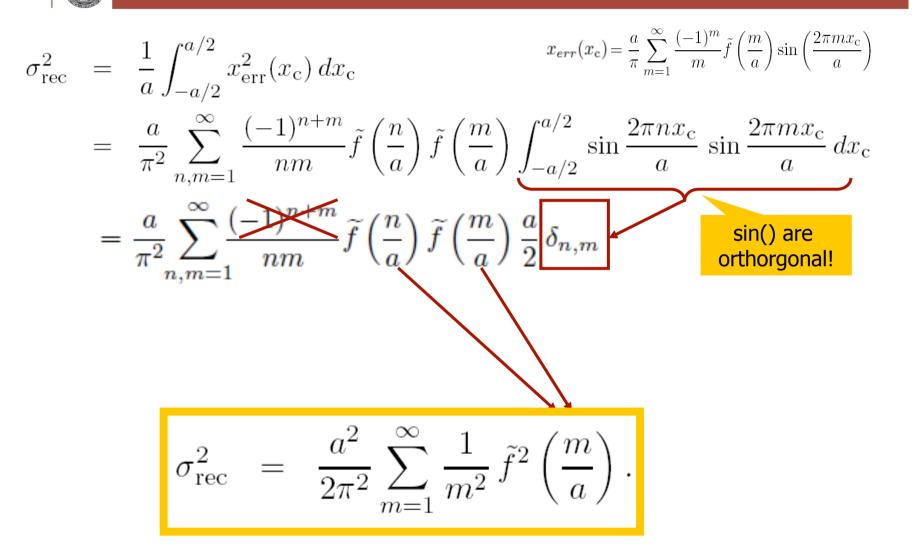


• Error already very small for σ = 0.5a

HighRR Seminar 18.4.2018: Spatial Resolution

Going Further: **Sigma** of x_{err}?

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG



HighRR Seminar 18.4.2018: Spatial Resolution

Another Check

$$\sigma_{\rm rec}^2 = \frac{a^2}{2\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} \tilde{f}^2\left(\frac{m}{a}\right).$$

• For very narrow signals, we have again $\tilde{f}(k) \rightarrow 1$ so that

$$\left(\frac{\sigma_{\text{err}}}{a}\right)^2 = \frac{1}{2\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{1}{12} \quad \text{as expected} \dots$$
$$\pi^2/6$$

• This is probably the most complicated way to get the 1/12...

f(x) = Gaussian(x) or Box(x)

 \bullet For a Gaussian signal with width σ

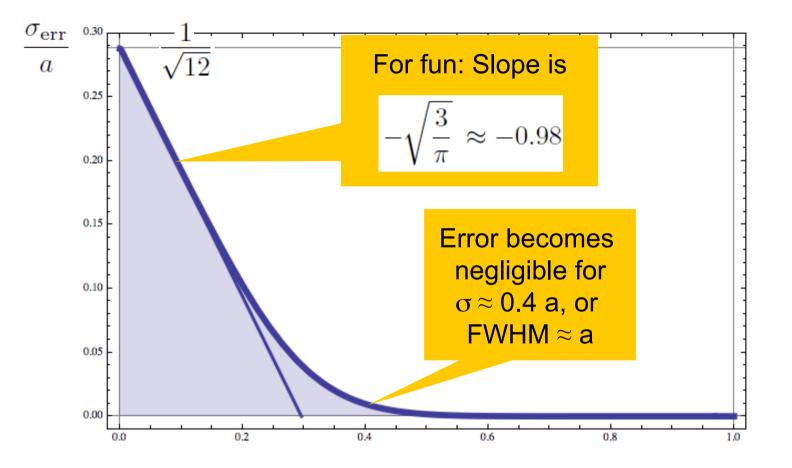
$$G(x) = \frac{1}{\sqrt{2\pi\sigma_s}} \exp\left(-\frac{x^2}{2\sigma_s^2}\right) \quad \text{with} \quad \tilde{G}(k) = \exp\left(-2\pi^2 k^2 \sigma_s^2\right)$$
$$\text{we get} \quad \left(\frac{\sigma_{\text{err}}}{a}\right)^2 = \frac{1}{2\pi^2} \sum_{m=1}^{\infty} \frac{\exp\left(-\frac{4m^2 \pi^2 \sigma_s^2}{a^2}\right)}{m^2}$$

For a Box of width s·a

$$\left(\frac{\sigma_{\rm err}}{a}\right)^2 = \frac{1}{360s^2} - \frac{1}{4\pi^4 s^2} \sum_{m=1}^{\infty} \frac{\cos(2\pi ms)}{m^4}$$

which is zero for integer s thanks to $\Sigma(1/n^4) = \pi^4/90$..

Plot this for f(x) = Gauss(x)

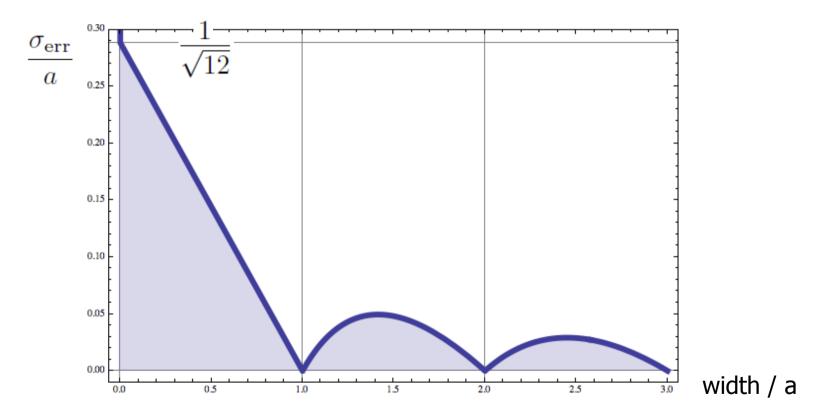


The result 'Error \approx 0 for FWHM \approx a' can be found for many pulse shapes. We knew this... but now we know *for sure*...

HighRR Seminar 18.4.2018: Spatial Resolution

Plot this for f(x) = Box(x)

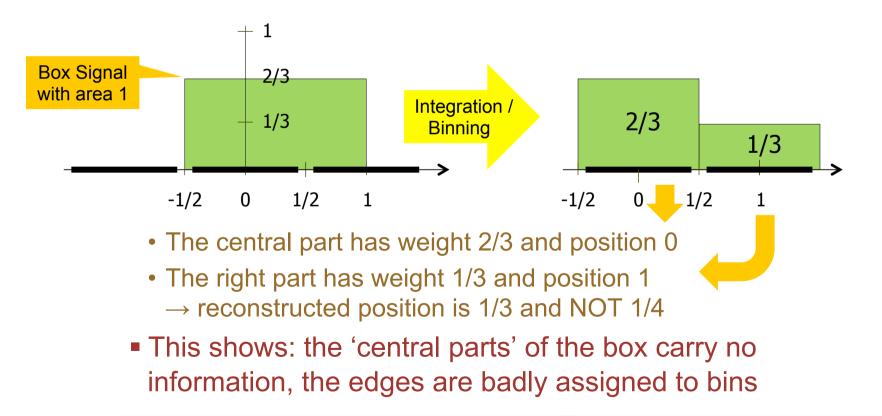
- Error is zero for integer box width.
- Behavior in-between is not trivial (see next slide)...



(Understanding the BOX-Behavior)

- Why does the error → 0 for wider Gauss while it is ≠ 0 also for wide boxes?
- We consider an example case:

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG



The answer to our question

- When do we need a fit ?
- We ONLY need a fit when the signal is more narrow than the strips.
 - For a more quantitative assessment, use the formulae derived above...
- My impression is that people fit too much...

LIMIT OF SPATIAL RESOLUTION FROM NOISE

The Question

How is spatial resolution degraded by noise?

• We all 'know'
$$\sigma_{\rm err} = \kappa \cdot \sigma_{\rm n} = rac{\kappa}{SNR}$$

This states, that the resolution degrades with noise 'linearly to first order'.

- The proportionality κ is empirical. We want to *calculate* it
- We also want to check what happens with *correlated noise*
- We want to see what happens to higher order
 - What is this here? It is the distribution of the noise...
- We assume we can reconstruct with CoG (more later...)
- We restrict on a 1D treatment, but 2D is straight forward

1. Write down x_{rek} with noise

- A Signal at \vec{x} is distributed over N strips at positions \vec{x}_{i}
- Signal on i-th strip is $S_{\rm i}(ec{x})$
- The sum of all signals shall be normalized to 1 ('trivial'):

$$\sum S_{i} = 1$$

• Assume we can perfectly reconstruct the position as center of gravity:

$$\vec{x} = \frac{\sum S_{i}\vec{x}_{i}}{\sum S_{i}} = \sum S_{i}\vec{x}_{i}$$

- Now assume noise n_i on all strips \rightarrow signals are S_i+n_i
- The reconstructed position is:

$$\vec{x}_{\rm rek}(\vec{x}) = \frac{\sum (S_{\rm i} + n_{\rm i})\vec{x}_{\rm i}}{\sum (S_{\rm i} + n_{\rm i})} = \frac{\vec{x} + \sum n_{\rm i}\vec{x}_{\rm i}}{1 + \sum n_{\rm i}}$$

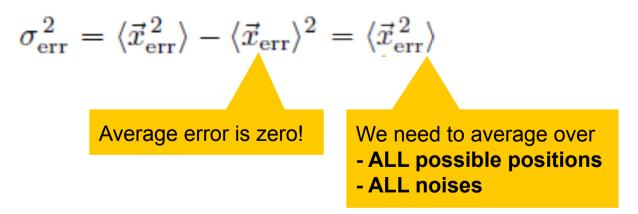
This becomes (Taylor Expansion of Denominator):

$$\vec{x}_{\rm rek}(\vec{x}) = \frac{\vec{x} + \sum n_{\rm i}\vec{x}_{\rm i}}{1 + \sum n_{\rm i}} = \left(\vec{x} + \sum n_{\rm i}\vec{x}_{\rm i}\right) \left(1 - \sum n_{\rm i} + \mathcal{O}(n^2)\right)$$

• The reconstruction *error* is:

$$\vec{x}_{\rm err}(\vec{x}) = \sum_{i} n_{\rm i}(\vec{x}_{\rm i} - \vec{x}) + \mathcal{O}(n^2).$$

We need the standard deviation:



3. Do the averaging

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

$$\sigma_{\text{err}}^{2} = \langle \vec{x}_{\text{err}}^{2} \rangle \qquad \vec{x}_{\text{err}}(\vec{x}) = \sum_{i} n_{i}(\vec{x}_{i} - \vec{x}) + \mathcal{O}(n^{2}).$$

$$= \sum_{i,j} \langle n_{i}n_{j} \rangle \langle (\vec{x}_{i} - \vec{x})(\vec{x}_{j} - \vec{x}) \rangle + \langle \mathcal{O}(n^{3}) \rangle$$
For uncorrelated noise
$$\langle n_{i}n_{j} \rangle = \delta_{ij} \cdot \sigma_{n}^{2} \qquad = \sigma_{n}^{2} \cdot \sum_{i} \langle (\vec{x}_{i} - \vec{x})^{2} \rangle + \mathcal{O}(\sigma_{n}^{3})$$
If we chose the origin such that
$$\sum_{i} \vec{x}_{i} = \vec{0}$$
This is the proportionality factor κ^{2} we are looking for!
$$\sigma_{\text{err}}^{2} = \sigma_{n}^{2} \left(\sum_{i=1}^{N} \vec{x}_{i}^{2} + N \langle \vec{x}^{2} \rangle \right) + \mathcal{O}(\sigma_{n}^{3}).$$

HighRR Seminar 18.4.2018: Spatial Resolution

Example: Strips

- Consider two strips at $x_1 = -a/2$ and $x_2 = +a/2$ (N = 2)
- Signals for a hit at x are

$$S_1(x) = (x_2 - x)/a$$
 and $S_2(x) = (x + x_2)/a$

1 , 2 and 3 are fulfilled:

 $S_1 + S_2 = 1;$ $x_1 S_1 + x_2 S_2 = x;$ $x_1 + x_2 = 0$

• We get
$$\left(\frac{\sigma_{\text{err}}}{\sigma_{\text{n}}}\right)^2 \approx x_1^2 + x_2^2 + \frac{2}{a} \int_{x_1}^{x_2} x^2 dx = \frac{2}{3} a^2$$

• Or $\sigma_{\rm err} = 0.816 \cdot a \cdot \sigma_{\rm n}$

For σ_n = 0.1 (Signal/Noise = 10), resolution = 8% · a
Resolution is better than optimal binary readout for S/N>5.6

Correlated Noise ?

• For FULLY correlated noise, n_{i} == n_{j} and $\langle n_{i}n_{j}
angle = \sigma_{n}^{2}$

• We get
$$\sigma_{
m err}^2 pprox \sigma_{
m n}^2 N^2 \langle ec{x}^2
angle$$

For the strip example

 $\sigma_{\rm err}$ = a $\sigma_{\rm n}$ / $\sqrt{3}$ = 0.57 a $\sigma_{\rm n}$ (instead of 0.816..)

- Correlated noise is less harmful than 'normal' noise
- Note: For mixed noise, superimpose both components
- Note: If the Amplitude of the signal is KNOWN (X-ray), noise becomes correlated and resolution improves!

Higher Orders (in noise)

- Noise can have different distributions.
- They have different higher moments:

$$\begin{array}{lll} \langle n_i^2 \rangle & = & \sigma_{\rm n}^2, \\ \langle n_i^4 \rangle & = & \beta \cdot \sigma_{\rm n}^4. \end{array}$$

• They are
$$\beta := \frac{\int n^4 p(n) dn}{\left(\int n^2 p(n) dn\right)^2} = \begin{cases} 3 : \text{Gauss} \\ 9/5 : \text{Box} \\ 1 : \text{Peaks} \end{cases}$$

• We need then higher order correlations (not trivial..):

$$\begin{aligned} \langle n_{\rm i} \rangle &= 0 \\ \langle n_{\rm i} n_{\rm j} \rangle &= \delta_{ij} \sigma_{\rm n}^2 \\ \langle n_{\rm i} n_{\rm j} n_{\rm k} \rangle &= 0 \\ \langle n_{\rm i} n_{\rm j} n_{\rm k} n_{\rm l} \rangle &= \delta_{ij} \delta_{jk} \delta_{kl} \left(\beta - 3\right) \sigma_{\rm n}^4 \quad + \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}\right) \sigma_{\rm n}^4 \end{aligned}$$

Higher Orders

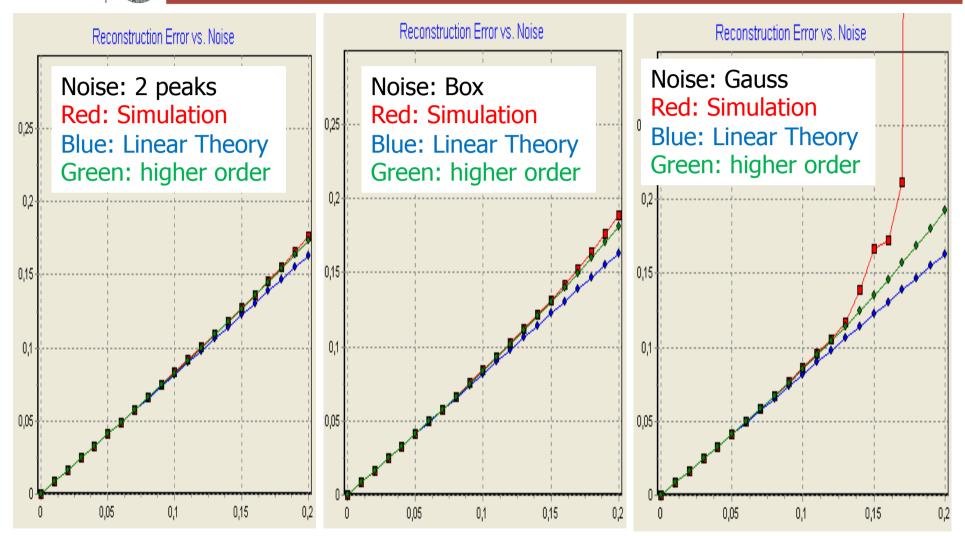
• Repeating the derivation yields $\sigma_{\text{err}}^{2} = \sigma_{n}^{2} \cdot (A + NB) \\ \cdot \left(1 + 3\left[\beta - 3 + N\frac{A + 3NB}{A + NB}\right]\sigma_{n}^{2}\right) - \text{Correction}$

with

$$A := \sum_{i=1}^{N} \vec{x}_i^2 \quad \text{and} \quad B := \left\langle \vec{x}^2 \right\rangle$$

- Only the correction depends on the 'type' (shape) of noise.
- NOTE:
 - For small noise, there is no need to simulate Gaussian noise
 - Randomly adding or subtracting ± $\sigma_{\rm n}$ has the same effect!

Is this true? \rightarrow Small Monte Carlo: Error vs. Noise



• Reconstruction for Gauss noise fails completely in few cases due to very high noise values

HighRR Seminar 18.4.2018: Spatial Resolution

© P. Fischer, ziti, Uni Heidelberg, Seite 38

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

2D Structures

- Can be treated similarly
- Observations:
 - Small number of electrodes is good
 - Well confined acceptance is good ('circle')

$$\sigma_{\rm err}^2 = \sigma_{\rm n}^2 \left(\sum_{i=1}^N \vec{x}_i^2 + N \vec{x}^2 \right) + \mathcal{O}(\sigma_{\rm n}^3).$$

Geometry	σ_{1D} theory		numerical
	linear	correction	(A=p=1)
strips	$\sqrt{\frac{2}{3}} \cdot p$	$\sqrt{1+3\beta\sigma_{\rm n}^2}$	0.8165
square	$\frac{2}{\sqrt{3}} \cdot \sqrt{A}$	$\sqrt{1+3(3+\beta)\sigma_{\rm n}^2}$	1.1547
hexagon	$\frac{\sqrt{5}\cdot 3^{1/4}}{6}\cdot \sqrt{A}$	$\sqrt{1+3\left(\frac{6}{5}+\beta\right)\sigma_{\mathrm{n}}^{2}}$	0.4905

Hexagons are best (least sensitive to noise!)

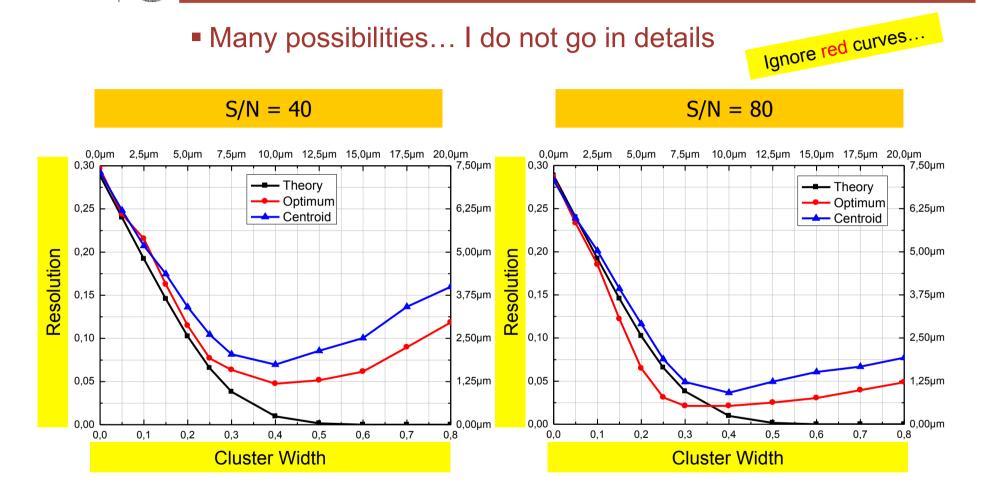
HighRR Seminar 18.4.2018: Spatial Resolution

BACK TO GOG Now with Noise

Problems with Centroid

- Resolution for small σ is bad \rightarrow better make f(x) wide
- BUT: Summing up many strips (large N) increases noise
- Must chose N small but such that reconstruction is 'just' ok.
 - Obviously N ~ σ
- The choice is fairly arbitrary
- And:
 - In real system, there is often a threshold (hits below this are not read out)
 - The reconstructed amplitude is wrong (signals below threshold are lost)
 - Broken pixels need special treatment

Monte Carlo Simulation

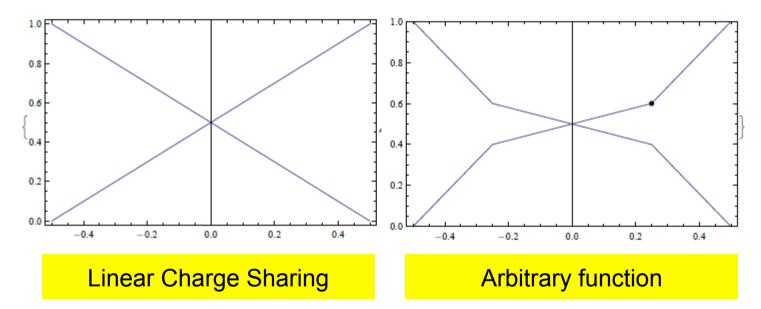


The optimum signal width is still close to FWHM = a!

ETA FUNCTION

Motivation

- Often the Signals Distribution function (e.g. on 2 strips) is not linear.
- This is related to the 'famous' eta-function.



- The position then cannot be calculated by GoG, but by using the inverse function (or the 'eta'-lookup table)
- Question: How does resolution depend on f(x)?

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

The signals on the two strips shall be

$$S_1(x) = Qf(x)$$

$$S_2(x) = Q - S_1(x) = Q (1 - f(x))$$

(we assume no signal is lost, i.e. we require $S_1+S_2 = Q$

We require

- f(x) is strictly monotonic (obvious)

• f(x) shall be symmetric in x (may not always be the case)

Obviously

$$x_{rek} = f^{-1} \left[\frac{S_1}{S_1 + S_2} \right]$$

Adding Noise

• With Noise on S₁ and S₂ we get

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Sigma – Averaging over Noise

To get

$$\sigma_{err}^{2} = \langle x_{err}^{2} \rangle - \langle x_{err} \rangle^{2} \qquad x_{err} = \frac{n_{1}(1 - f(x)) - n_{2}f(x)}{f'(x)}$$

• we average first over noise. We get

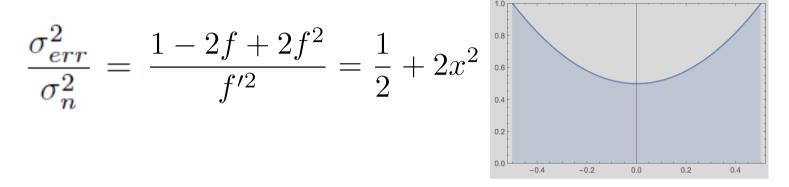
$$\sigma_{err}^2 = \sigma_n^2 \left\langle \frac{1 - 2f + 2f^2}{f'^2} \right\rangle + 2 \left\langle n_1 n_2 \right\rangle \left\langle \frac{f^2 - f}{f'^2} \right\rangle$$

- Coefficients depend on the shape of the response function
- They are small where the response function is steep (obvious..)
- Vice versa: Flat parts in eta are bad.
- For *uncorrelated* noise, only the first term matters

$$\frac{\sigma_{err}^2}{\sigma_n^2} = \left\langle \frac{1 - 2f + 2f^2}{f'^2} \right\rangle \quad \begin{array}{c} \text{Average over} \\ \text{position} \end{array}$$

Back to linear Interpolation

- What does this mean for linear interpolation, f(x) = x+0.5 ?
- Let us first look at the position dependent error



• This is NOT constant. It *doubles* at the edges !!!

The average error is

$$\frac{\sigma_{err}^2}{\sigma_n^2} = \int_{-1/2}^{1/2} \left(\frac{1}{2} + 2x^2\right) = \frac{2}{3}$$

as before. (s. page 30)

HighRR Seminar 18.4.2018: Spatial Resolution

© P. Fischer, ziti, Uni Heidelberg, Seite 48

Finding New Distribution functions

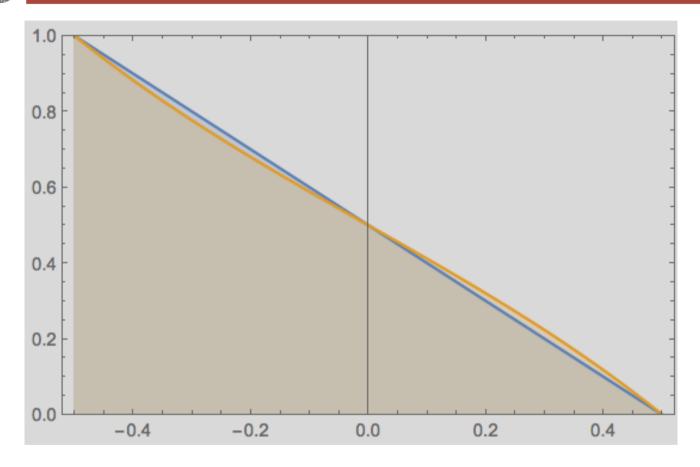
- Very exciting: Can we find a f(x) such that the integral is better than with linear interpolation
 - Probably not (?) But let's see...
- Easier: Can we find a distribution function so that the error is independent of position?
- One line of Mathematica is enough:

$$f_{flat}(x) = \frac{1}{2} \left(1 - \operatorname{Sinh}[2x\operatorname{ArcSinh}(1)] \right)$$

The average σ^2 is 0.643, which is (a little bit) **better** than 2/3=0.66 !!

We found a distribution which is better than linear interpolation! (it is less noise sensitive)

Better! (but just a little...)



Are there better functions???

© P. Fischer, ziti, Uni Heidelberg, Seite 50

Summary: What did we learn ?

- Basic Algebra is fun.....
- CoG is 'perfect' as soon as signal width >≈ strip width
- Wider (too wide) signals are more sensitive to noise
- Ideal κ for strips is 0.816
- Analogue readout for S/N<6 is useless.</p>
- Noise shape (distribution) does not matter for S/N > 10
- Correlated noise is less harmful
- Hexagons have better res. and are less sensitive to noise
- Linear interpolation has more error at the edges
- There is a better reconstruction function than linear
 - but the difference is negligible....
 - I did not find better so far...

Thank you for your attention!

HighRR Seminar 18.4.2018: Spatial Resolution

 \odot P. Fischer, ziti, Uni Heidelberg, Seite 52