

High and Low Energy Positron Beamlines

Jim Clarke

STFC Daresbury Laboratory 20th November 2018 EuPRAXIA Yearly Meeting, INFN Frascati

Context

- EuPRAXIA aims to produce plasma-accelerated electron beams of industrial quality
- These beams can be used as source for secondary particles such as positron beams
- Plan is to design two positron beamlines
 - Low-energy positrons, to be used for material characterisation via Positron Annihilation Lifetime Spectroscopy.
 - High-energy positrons, to study the feasibility of positron injection in future HEP experiments
- For more details of potential applications and positron production
 see talk by Gianluca Sari, Weds Plenary

Low Energy Beamline

- Interested in 100keV to 1MeV positrons
- Assume 5 GeV electron beam, 0.05% BW, 100 pC striking a 1 cm thick Pb target
- The positrons generated at low energies have very large divergence (2π)
- The challenge is to capture as many as possible and to transport them to the end station

Low-Energy Region

Low Energy Beamline Concept

 Use a dog-leg spectrometer to separate the high energy electrons and photons from the low energy positrons

Aarón Alejo, QUB

Low Energy Beamline Concept

Low Energy Beamline Concept

- YAG screens
- charge measurement
- vacuum pump & gauge
- correctors (H & V)
- collimators / apertures
- separator dipoles

Low energy line

- Positron energy 100 keV 1 MeV
- Do not know bunch parameters yet
- Need to look at "capture" of e⁺ in more detail Parameters assumed were:

 $\beta_x = \beta_y = 0.2 \text{ mm}, \quad \alpha_x = -0.008, \quad \alpha_y = -0.043,$

- Aim to transport as many positrons as possible
- Emittance assumed to be $\epsilon_N = 30 \mu m$,

Very large beam size because of large normalised emittance and (modest, equal) quad strengths not optimised – can be done when initial bunch properties better understood

Bruno Muratori, STFC Daresbury

High energy line

- Positron energy at least 500 MeV
- Very similar concept as low energy line capture, transport, energy select in dog-leg, deliver to end station

	E = 500MeV	E = 1 GeV
Positron number (per 100pC electron charge)	1×10 ⁷	6×10 ⁶
Divergence (mrad)	20	10
Source Size (um)	13	10
Emittance (um)	0.3π	0.1π
Invariant Emittance (um)	320π	200π

High Energy Beamline Concept

High Energy Beamline Concept

- YAG screens
- charge measurement
- vacuum pump & gauge
- correctors (H & V)
- collimators / apertures
- separator dipoles

Modest beam size despite large normalised emittance. Quad strengths 200T/m Layout not optimised – can be done later

1 GeV Capture Details

- Parameters: $\beta_x = \beta_y = 0.2 \text{ mm}$, $\alpha_x = -0.008$, $\alpha_y = -0.043$,
- $\epsilon_N = 30 \mu \text{m}$, in both planes & e. spread < $\pm 25\%$

SIG (mm)

- Permanent Halbach quad. channel
- 12 cm long
- 200 T/m
- 5 cm drifts between them

Bruno Muratori, STFC Daresbury

1GeV channel running at 5 GeV

 The exact same quadrupole channel can be used for any energy (modulo aperture) and the beam can still be focused

Bruno Muratori, STFC Daresbury

Same channel reset for 5 GeV

 If quadrupoles can be rotated by 90° then this is equivalent to a change in polarity & the beam size can be considerably reduced

Summary

- Plan is to design two positron beamlines
 - Low-energy positrons, to be used for material characterisation via Positron Annihilation Lifetime Spectroscopy.
 - High-energy positrons, to study the feasibility of positron injection in future HEP experiments
- Some very preliminary layouts have been assessed which can transport over a wide energy bandwidth
- The main uncertainty in all cases are the initial bunch parameters

 optimisation will come later
- We are working on broadly similar problems for SCAPA and CLF
- We are also considering alternative transport solutions, such as FFAG style lattices