EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP7: New results on positrons Implications for EuPRAXIA

Gianluca Sarri, A. Alejo, J. Warwick, G. Samarin, M. Cunningham, C. McChuskey Queen's University Belfast, UK g.sarri@qub.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Introduction

Three main *representative* applications have been identified for Eupraxia:

- 1. Betatron-based x-ray source for imaging (UK co-ordinator: **Z. Najmudin**)
- Compton-based γ-ray source for industrial applications and high-field QED (UK co-ordinators: C. Murphy and S. P. D. Mangles)
- 3. Low-energy and high-energy positron beam-lines (UK co-ordinator: G. Sarri)

	e ⁻ requirements					
	high-cl	harge	(~nC?)			
	wider divergence ok!					
	large b	andw	idth ok!			
↓ I	Other applications?					
Low-energy positron beam-line			High-en	ergy	positron be	am-line
Energy: tuneable from 0.5 to	5 MeV		Energy:		1 GeV	
Bandwidth: 100 keV			Bandwic	lth:	5%	
Charge/s: tens of pC (> $10^8 e^+$)			Charge/l	beam:	~ 10 pC (~	$10^{8} e^{+}$
Duration: 10s of ps			Duratior	n:	10 fs	
Emittance: ~ mm mrad			Emittan	ce:	0.2 mm mr	ad

EUPRAXIA Low - energy positrons

A high-charge source of low-energy positrons is particularly useful for volumetric, high-resolution inspection of materials (PALS: Positron Annihilation Lifetime Spectroscopy)

Currently done with β^+ decay radioactive sources:

- X Fixed and relatively low e⁺ energy
- X Long e^+ duration (> ns)
- X Continuous source

Laser-driven sources can provide a tuneable source of positrons with 10s of ps duration

Low - energy positrons

METHOD 1: Irradiation of solid targets with laser-wakefield accelerated electron beams

Gianluca Sarri: Frascati November 2018

E^[•]PRA IA

EUPRAXIA Low - energy positrons

METHOD 2: *Direct laser irradiation of solid targets*

Gianluca Sarri: Frascati November 2018

Low - energy e⁺ beamline

Work by Bruno Muratori and Jim Clarke, ASTeC, see talk by Jim Clarke on Tuesday at 16:30!

- ☑ 6 m of beam-line
- Beam size ~ 1-10 mm
- \boxtimes divergence ~ 20 mrad
- \boxtimes Duration at 1.0±0.1 MeV ~ 200 ps
- Solution Section Section

High energy positrons

E^t**PR**^A**XI**A

High energy positrons

Normalised emittance

	Units	FACET-I	FACET-II	LWFA
E	${\rm GeV}$	21	10	1
P	W	7.4	9.6	3
Q_e	pC	350	500	2
σ_x	$\mu \mathrm{m}$	30	4	10
σ_y	$\mu \mathrm{m}$	30	4	10
σ_z	$\mu \mathrm{m}$	50	6.4	0.6
ϵ_x^*	$\operatorname{mm}\operatorname{mrad}$	200	7	500
ϵ_y^*	$\operatorname{mm}\operatorname{mrad}$	50	3	500
ΔE	%	1.5	1	5
f	$_{\rm Hz}$	1	1	$10 - 10^3$
l	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	$5 imes 10^{23}$	$6 imes 10^{25}$	10^{22-24}

A. Alejo et al., submitted (2018) Arxiv:1806.02633

High energy positrons

Gianluca Sarri: Frascati November 2018

High energy e⁺ beamline

Work by Bruno Muratori and Jim Clarke, ASTeC, see talk by Jim Clarke on Tuesday at 16:30!

Conclusions

High-energy positron beam-line

FLUKA simulations indicate, for a 1nC 5GeV broadband electron beam, the following parameters at source for 1 GeV ±5% energy:

$\overline{\mathbf{X}}$	Source size:	15 μm
$\overline{\mathbf{X}}$	Divergence:	10 mrad
$\overline{\mathbf{X}}$	Duration:	5-10 fs
$\overline{\mathbf{X}}$	Charge:	20 pC
$\overline{\mathbf{X}}$	Normalised emittance:	150 π mm mrad

Emittance and source size measured at 100 MeV. Necessity to repeat at ~ GeV

Collaborators at ASTeC are designing a beam transport and manipulation line that would guarantee, within 4m, the required bandwidth in a 50 μ m beam with a 2 mrad divergence

Low-energy positron beam-line

Experiments carried out using TARANIS (QUB) indicate that, potentially, direct laser irradiation of solids is the preferred way

 $\sim 10^{7} \, e^{+} \, /sr/100 keV \, BW$

 $0.5 - 3 \, \text{MeV}$

- ☑ Energy range:
- ➢ Number:
- \boxtimes Duration: ~ ps

We can start testing elements of the transport line using TARANIS at QUB

Collaborators at ASTeC are designing a beam transport and manipulation line that would guarantee, within 6m, the required bandwidth in a \sim mm beam with a 20 mrad divergence

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Thanks for your attention!

Gianluca Šarri, A. Alejo, J. Warwick, G. Samarin, M. Cunningham, C. McChuskey Queen's University Belfast, UK g.sarri@qub.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.