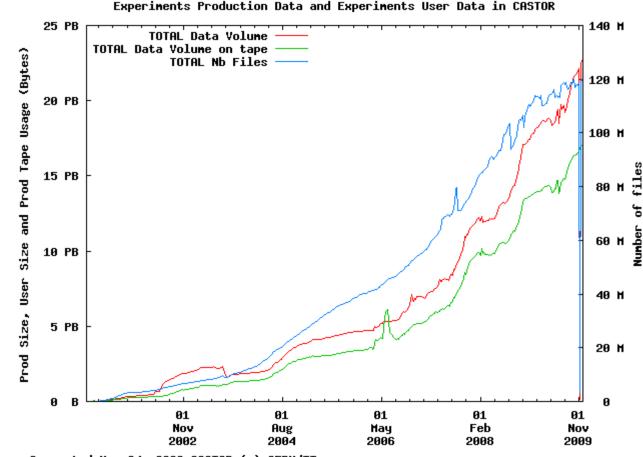


Fabric Infrastructure and Operations

Archive Storage Experiences and Outlook

Tim Bell CERN Data Preservation and Long Term Analysis 7th December 2009



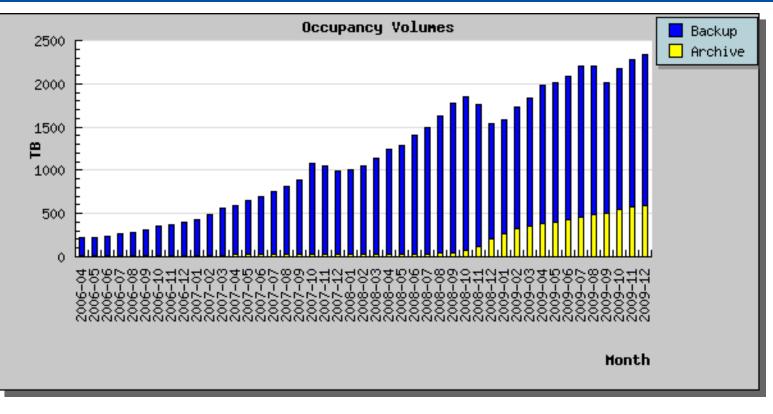
2

- Scale of the problem
- Detecting and resolving issues
- Areas for investigation

Castor Physics Data Archive CERN

Generated Nov 24, 2009 CASTOR (c) CERN/IT

Expected data rate of 15PB/yearKeep data for at least 20 years



3

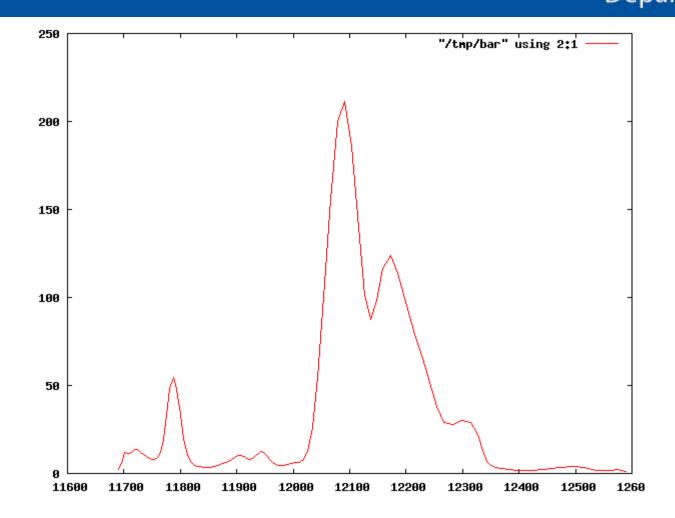
Department

Backup in TSM

CERN Department

- Backup for Organisations vital data
 - Administration databases, Physics Metadata, User files
- Data volumes are equivalent to 2 LHC experiments
 - 20TB/day sent

FIO Technologies


Disk Data Preservation

- Need to ensure that the data is recorded correctly
 - Checksumming is now end-to-end from experiment pits to tape
 - Sequential I/O only
- RAID array verification at regular intervals to identify bad disks
 - Tuesdays to Thursdays only
- Fsprobe provides a background low I/O check, write and then read back
 - Should never happen.....

Fsprobe results 2007 - 2009 CERNIT

- CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**
- Incidents/day during past 1000 days
 - Problem not often seen for real data

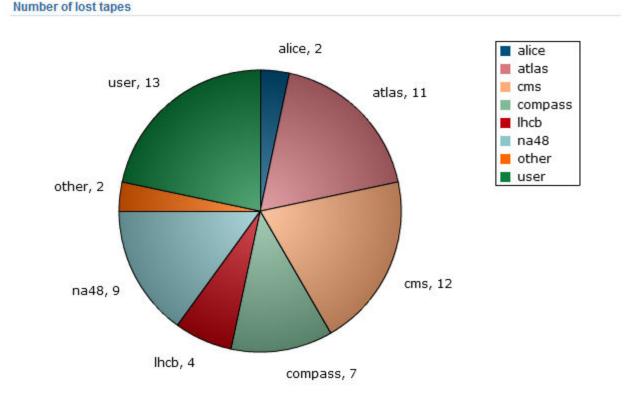
Fsprobe Root Causes

- 5,000 drives manually upgraded in two campaigns

CERN

Department

- Controller firmware
 - Bad disks not identified fast enough
 - RAID-5 cannot fix errors in these cases
- Memory errors
 - ECC memory is supposed to be able to correct/report these
- Operating system bugs
 - Linux and XFS bugs found


Tape Data Preservation

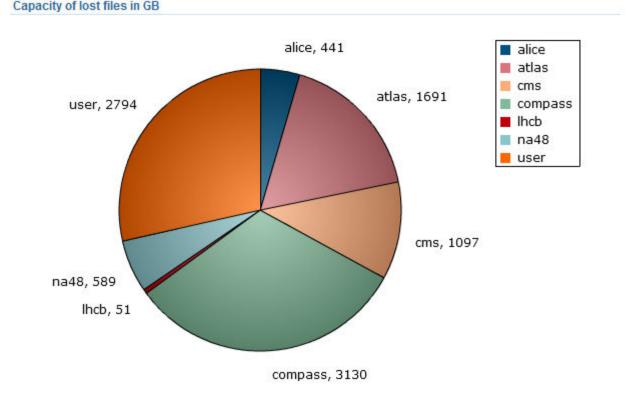
• Data on tape is still at risk

- 60 tapes last year where some data was lost

CERN

Department

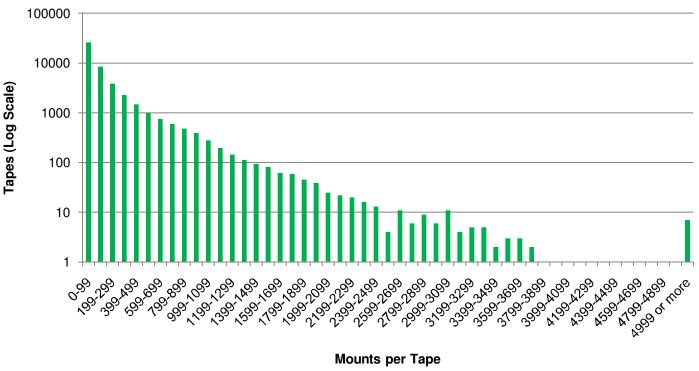
9



Tape Data Preservation

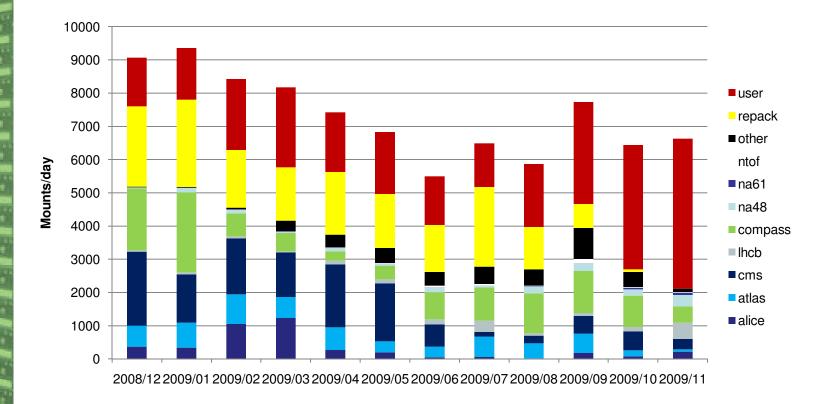
 However, over 90% of the data on those tapes could be recovered

CERN


Department

Improving Tape Reliability

- The most high risk operation is mounting/unmounting the tape
 - Try to avoid using tape in random access
 - Bigger disk caches protect the tapes



Distribution of Mounts per Tape

CERN

Department

Improving Tape Reliability

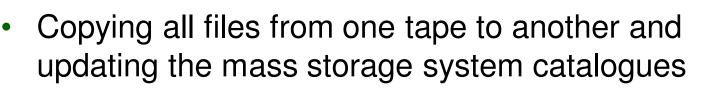
9,000 mounts per day during peak activity over 120 drives

•60 tapes failed out of 2.6 million mounts reasonable reliability

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** CERN

Department

Impact of Capacity



- Tapes are getting larger
 - Currently 1TB doubling every 2 years
- All of LEP experiment data on 134 tapes
- Cast, AMS, HARP are around 20 tapes
 - Single tape break on load could lose 5% of experiment data
- Second copy of this data is being made to different tapes to reduce risk
 - Low cost as volumes are low

13

Tape Copying (Repack)

- Validates checksums at the same time
- Used for tape data recovery such as media errors along with migrating to higher density tapes
 - Recently completed migration from 500GB to 1TB tapes

CERI

Department

- Copying 45,000 tapes took around a year using 1.5 FTE and up to 40 tape drives
 - Next round in 2010 will take 18 months
 - New drives appear every two years...
- Continuing in the background would be desireable
 - But depends on resource availability

Future Directions?

- Find more efficient mechanism to handle data loss / unavailability
 - It is inevitable but quick action can save data
 - Copy still on disk even if tape copy is unreadable
 - Copy on the grid
 - Effort to maintain data catalogues could be reduced by automation
- Need for low impact background checks on archived data
 - Checksums still OK?
 - Media still OK?
 - Early detection before unavailable
 - Identify good candidates
 - Check when tape is full
 - Check on round-robin and on error thresholds
- Investigate large disk caches to reduce load on tape
 - Move to tape for backup only, not HSM
 - Investigate disk reliability/power as a potential archive media

15

A Sample Case

- Some data in our backup system has been migrated over the past 18 years
- A user came to IT in 2008 asking for the contents of a Wylbur data disk (the mainframe installed in 1976)
- The image of the disk had been copied to CERNVM and compressed (tersed) before sending to TSM
 - Terse was VM's equivalent of zip
- TSM had been migrated from CERNVM to AIX to Linux
- The data had been migrated from IBM 3480, IBM 3490, STK 9940 and IBM 3592
- Terse was not available on Linux so data could not be read
- Luckily, we found an open source 'terse' 16bit OS/2 program and ported it to 64bit Linux to allow us to recover the files

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

16

Conclusions

- Regular probes, scanning existing data and checksums allows losses to be identified and metrics established
- Maintaining the stream of bits is possible for an extended period of time with regular media refreshes
 - It does take man power to keep refreshing

•Fsprobe and silent data corruptions http://fuji.web.cern.ch/fuji/talk/2007/kelemen-2007-C5-Silent Corruptions.pdf

18