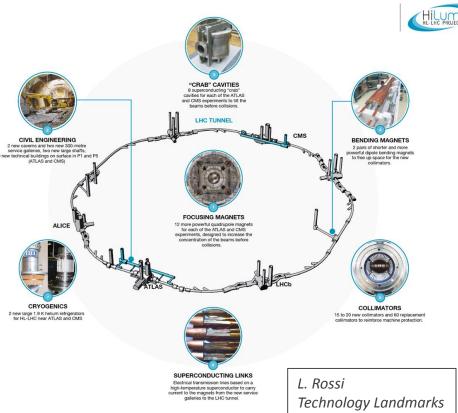


Testing of Superconducting Magnets

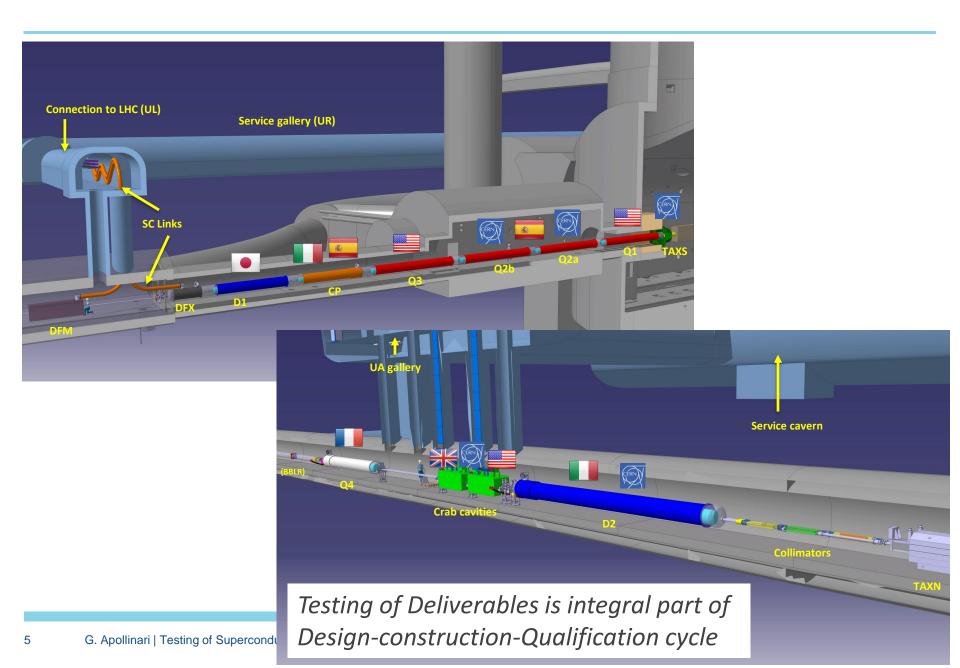
Giorgio Apollinari BNL – 2nd International Magnet Test Stand Workshop 8th May 2018

Content

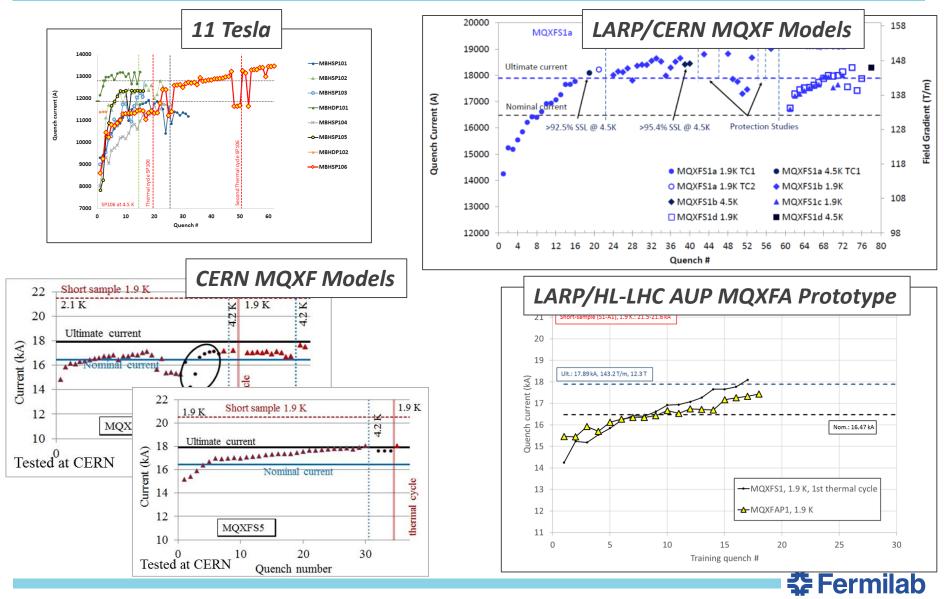
- Where are we ?
- Where are we going in the near-future?
- What's beyond our near-future destination ?

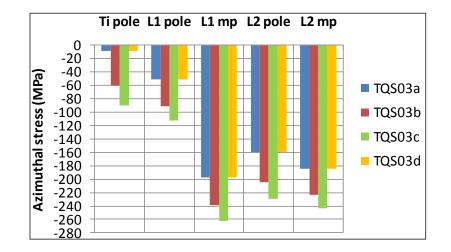

Necessity of Testing

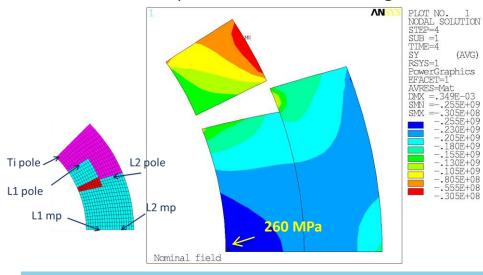
- Testing equipment to performance level before installation is a major risk reduction approach to construction of unique facilities such as accelerators
 - Replacing a magnet during commissioning or operation of an accelerator facility is typically more expensive/time-consuming (not to talk about the disruption to the research program) than catching a non-performing element before installation.
 - Advantage of accelerator field versus one-of-a-kind applications such as fusion or magnets for experiments.
- Testing of magnets has been a routine effort for all accelerators based on NbTi technology (Tevatron, RHIC, HERA, LHC, …)
- Existing Testing capabilities extensively described at "2016 1st International Workshop of the SC Magnet Test Stands"

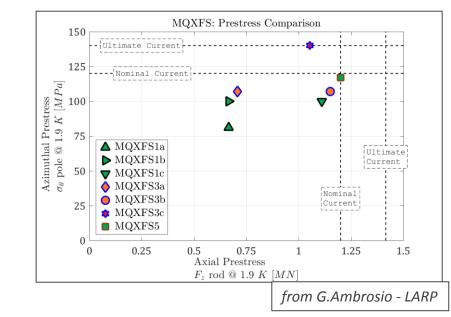

🛠 Fermilab

Big Elephant in the Room – HL-LHC & Nb₃Sn Technology


- A peak luminosity of L_{peak} = 5 × 10³⁴ cm⁻²s⁻¹ with levelling, allowing:
 - An integrated luminosity of 250
 fb⁻¹ per year, enabling the goal
 of L_{int} = 3000 fb⁻¹ twelve years
 after the upgrade.
- This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

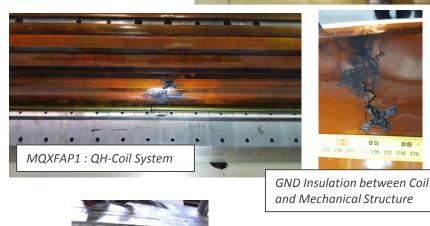



Testing Experience on Nb₃Sn (for Project Managers)



Testing Experience on Nb₃Sn (for Magnet Developers)

12 kA (achieved quench level) Check for permanent or reversible degradation


G. Apollinari | Testing of Superconducting Magnets

7

Non-standard Configurations: i.e. when s#%@happens

- MQXFAS1: Burned Negative SC lead
 - a quench detection cable connected to the wrong receptacle, followed by misidentification of quench detection signal anomalies in the standard checkout data
- MQXFAP1: Short QH-to-coil progressed to a Coil-to-GND short
 - Hipot after exposure to He, possible misidentification of unexpected GND currents during early quenches
- MICE Spectrometer Solenoids
 - Burnt lead, probably caused by failure of connection to internal diode pack during quench.
- Critical questions for this workshop:
 - What can be inferred from deep scrutiny of all data at test facility ?
 - Database of "lessons learned" from all regions ?

5/9/2018

Content

- ✓ Where are we ?
- Where are we going in the near-future?
- What's beyond our near-future destination ?

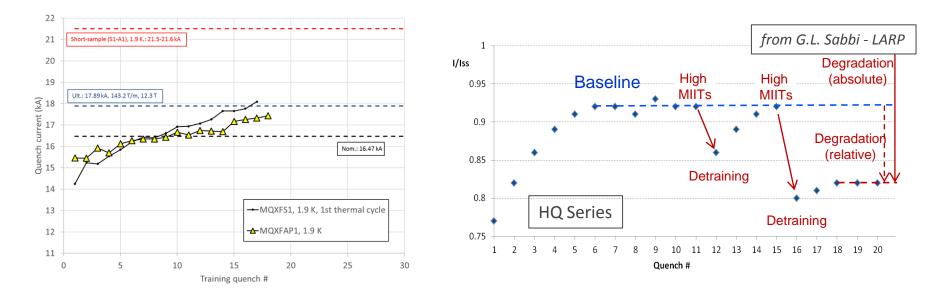
Total Numbers to be Tested and Schedule

- HL-LHC (2019-2023):
 - CERN/FREIA/LASA/CIEMAT/CEA:
 - ~10 Quads + ~12 Dipoles Nb₃Sn
 - ~80 NbTi Magnets
 - Sc Links and HTS Current Leads
 - BNL/FNAL: ~20 Quads Nb_3Sn
 - GSI: ~400 NbTi Magnets
- Magnets R&D (2019-2023)
 - CERN/CEA/FNAL/LBNL/BNL: ~few/year/location
- Other Machines (2020-2026)
 - IEC (Ion Electron Collider)@BNL/JLAB: likely NbTi
 - PIP-II@FNAL: few dozens NbTi focusing solenoids

. . .

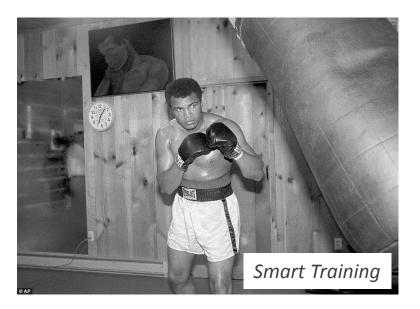
US Strategy for HL-LHC Magnets and Testing

- Test at BNL (single magnet in vertical configuration) and at FNAL (2 magnets assembled in Cold Mass and Final cryostat).
 - Few challenges, but overall risk reduction is expected to speedup execution of HL-LHC AUP Project
 - Functional Requirement Specs and Acceptance Criteria to define what and how measurements are performed



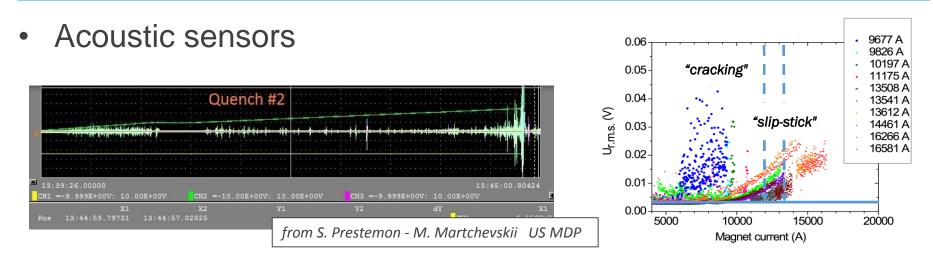
Content

- ✓ Where are we ?
- ✓ Where are we going in the near-future?
- What's beyond our near-future destination ?


Training appears to be a constant feature of Nb₃Sn Magnets

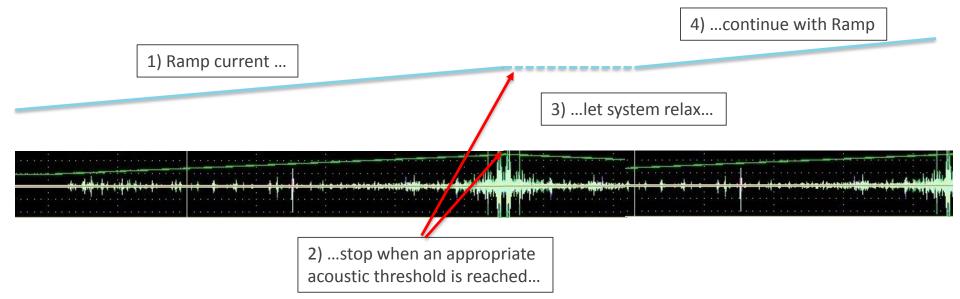
- Extended training (~20 quenches to nominal) is ~viable for low quantities of magnet (HL-LHC), not for larger endeavors such as FCC
- (So far) No magic bullet for a "train-less" magnet
 - Personal hunch: coil assembly/materials might reserve surprises, but solutions based on mechanical structure might not be the proper venue to pursue
- More worrisome, at high current values "detraining" (high MIITs) appears to be a feature of Nb₃Sn magnets as well

Nb₃Sn Magnet Training

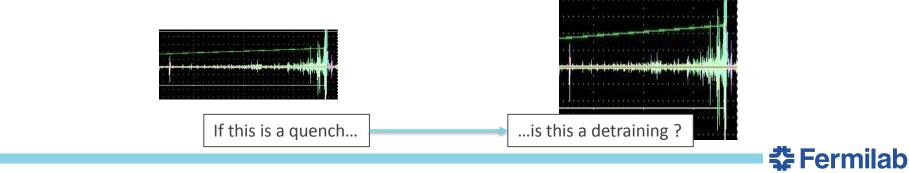


I hated every minute of training... *Muhammad Ali*

LBNL-MDP Technology



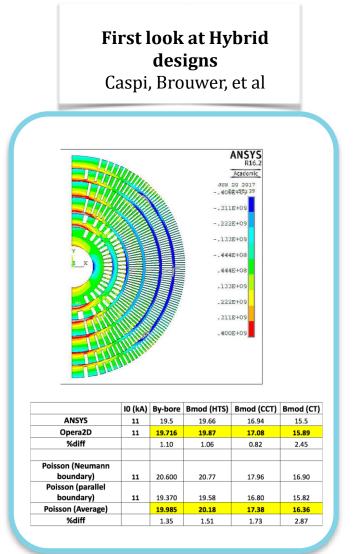
- What happens if current ramp is stopped once a critical acoustic threshold is achieved, and magnet is left to "relax" ?
 - Can we avoid quenches and speed-up training ?
 - Can we eliminate one set of points from the plot (i.e. "slip-stick")?
 - More important, can we identify "detraining" events (high MIITs) and avoid them ?



Ideal Experiments in the "ideal" Test Stand

• Training ramp driven by acoustic sensors

• Detraining identification (and avoidance !)



5/9/2018

Other venues for Magnet Test Systems

- Test of Hybrid Magnets
- Multiple-leads top and λplates
- Detection and Quench protection in coupled-magnet systems

Parameter	Existing VMTF	Proposed HFVMTF
Operating Temperature	1.8K	1.8-1.9K
Maximum Current (1 st PS)	30 kA	30 kA (re-use existing)
Maximum Current (2 nd PS)	Not available	Incl. 10 to 15 kA (to test hybrid magnets)
Helium Vessel Diameter	25.8 inches (655 mm)	42 inches (1066 mm)
Maximum Length of Test Object	3750 mm	>2000 mm (funds limited)
Maximum Diameter of Test Object	630 mm (MQXFS1 with skin)	1000 mm
Crane Capacity	10 tons	25 tons (existing)

Conclusions

- We have a lot of magnets to test
- Recent progress in monitoring/diagnostic techniques extremely promising
- HL-LHC AUP with several (~few dozens) identical magnets could be an ideal deployment ground for monitoring & diagnostic equipment to inform world community on behavior of Nb₃Sn magnets
- HTS magnets can be tested in stand-alone today, however hybrid magnets of the future will require development of new test stands equipment and/or technology (quench protection) when viable future models (~20T) will start hitting the testing facilities
- Benefits of database of "lessons learned" on Magnet Test Facilities
 Fermilab