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Necessity of Testing

Testing equipment to performance level before installation is

a major risk reduction approach to construction of unique

facilities such as accelerators

— Replacing a magnet during commissioning or operation of an
accelerator facility is typically more expensive/time-consuming

(not to talk about the disruption to the research program) than
catching a non-performing element before installation.

— Advantage of accelerator field versus one-of-a-kind applications
such as fusion or magnets for experiments.

Testing of magnets has been a routine effort for all
accelerators based on NbTi technology (Tevatron, RHIC,
HERA, LHC, ...)

Existing Testing capabilities extensively described at “2016 15t

International Workshop of the SC Magnet Test Stands”
£& Fermilab
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Big Elephant in the Room — HL-LHC & Nb,;Sn Technology

* Apeakluminosity of L., =
5 X 103% cms1 with levelling,
allowing:

P,

— An integrated luminosity of 250
fb per year, enabling the goal _=_
of L, = 3000 fb! twelve years =~ =
after the upgrade.

* This luminosity is more than ten
times the luminosity reach of
the first 10 years of the LHC
lifetime.

L. Rossi
Technology Landmarks
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Connection to LHC (UL)
Service gallery (UR)

SC Links

e

|

Service cavern

\

Crab cavities .
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e,

Collimators

Testing of Deliverables is integral part of
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Testing Experience on

Nb,Sn (for Project Managers)
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Testing Experience on Nb,Sn (for Magnet Developers)
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12 kA (achieved quench level)
Check for permanent or reversible degradation
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Non-standard Configurations: i.e. when s#% @ happens

« MQXFASL: Burned Negative SC lead Bt

— aquench detection cable connected to the
wrong receptacle, followed by mis-
identification of quench detection signal
anomalies in the standard checkout data

« MQXFAP1: Short QH-to-coil progressed
to a Coil-to-GND short

— Hipot after exposure to He, possible mis-
identification of unexpected GND currents
during early quenches

* MICE Spectrometer Solenoids

— Burnt lead, probably caused by failure of

connection to internal diode pack during : " 6ND insulation between coil
quenCh . and Mechanical Structure

« Critical questions for this workshop:

— What can be inferred from deep
scrutiny of all data at test facility ?

— Database of “lessons learned” from all
regions ?

A oy
" | MICE SSD: Cpoil Lead pack
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Total Numbers to be Tested and Schedule

e HL-LHC (2019-2023):
— CERN/FREIA/LASA/CIEMAT/CEA:
~10 Quads + ~12 Dipoles Nb,;Sn
~80 NbTi Magnets
Sc Links and HTS Current Leads
— BNL/FNAL: ~20 Quads Nb;Sn
— GSI: ~400 NbTi Magnets

 Magnets R&D (2019-2023)
— CERN/CEA/FNAL/LBNL/BNL.: ~few/year/location
e Other Machines (2020-2026)

— |IEC (lon Electron Collider)@BNL/JLAB: likely NbTi
— PIP-II@FNAL: few dozens NbTi focusing solenoids

2% Fermilab
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US Strategy for HL-LHC Magnets and Testing

« Test at BNL (single magnet in vertical configuration) and at
FNAL (2 magnets assembled in Cold Mass and Final cryostat).

— Few challenges, but overall risk reduction is expected to speed-
up execution of HL-LHC AUP Project

— Functional Requirement Specs and Acceptance Criteria to define
nts are performed
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Training appears to be a constant feature of Nb,Sn Magnets
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« Extended training (~20 quenches to nominal) is ~viable for low quantities
of magnet (HL-LHC), not for larger endeavors such as FCC
* (So far) No magic bullet for a "train-less” magnet

— Personal hunch: coil assembly/materials might reserve surprises, but solutions
based on mechanical structure might not be the proper venue to pursue

* More worrisome, at high current values “detraining” (high MIITs) appears
to be a feature of Nb,;Sn magnets as well

2% Fermilab
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Nb,Sn Magnet Training

Brute Force Training |

Smart Training

| hated every minute of training...

Muhammad Ali

2= Fermilab
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LBNL-MDP Technology
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« What happens if current ramp is stopped once a critical
acoustic threshold is achieved, and magnet is left to “relax” ?

— Can we avoid quenches and speed-up training ?
— Can we eliminate one set of points from the plot (i.e. “slip-stick”) ?

— More important, can we identify “detraining” events (high MIITs)
and avoid them ?

2% Fermilab
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Ideal Experiments in the “ideal” Test Stand

« Training ramp driven by acoustic sensors

4) ...continue with Ramp

1) Ramp current ...

3) ...let system relax...

2) ...stop when an appropriate
acoustic threshold is reached...

» Detraining identification (and avoidance !)

[ W

{ |
" ‘ l
L v

|
If this is a quench... ...is this a detraining ? n
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Other venues for Magnet Test Systems

« Test of Hybrid Magnets
* Multiple-leads top and A-

plates

« Detection and Quench
protection in coupled-magnet

systems

Operating Temperature
Maximum Current (15t PS)

Maximum Current (2" PS)

Helium Vessel Diameter

Maximum Length of Test

Object

Maximum Diameter of Test

Object

Crane Capacity
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1.8K
30 kKA

Not available

25.8 inches (655 mm)

3750 mm

630 mm (MQXFS1

with skin)

10 tons

Proposed HFVMTF
1.8-1.9K

30 KA (re-use existing)

Incl. 10 to 15 kA ( to test
hybrid magnets )

42 inches (1066 mm)

>2000 mm (funds limited)

1000 mm

25 tons (existing)

First look at Hybrid
designs
Caspi, Brouwer, et al
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10 (kA) | By-bore | Bmod (HTS) | Bmod (CCT) |Bmod (CT)

ANSYS 1 19.5 19.66 16.94 15.5
Opera2D 1 [ 19716 | 1987 17.08 1589 |
%diff 1.10 1.06 0.82 2.45

Poisson (Neumann

boundary) 1 20.600 20.77 17.96 16.90
Poisson (parallel
boundary) 11 19.370 19.58 16.80 15.82
Poisson (Average) 19.985 20.18 17.38 16.36
%diff 1.35 1.51 173 2.87
3¢ Fermilab
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Conclusions

 We have a lot of magnets to test

* Recent progress in monitoring/diagnostic technigues
extremely promising

 HL-LHC AUP with several (~few dozens) identical magnets
could be an ideal deployment ground for monitoring &
diagnostic equipment to inform world community on behavior
of Nb;Sn magnets

« HTS magnets can be tested in stand-alone today, however
hybrid magnets of the future will require development of new
test stands equipment and/or technology (quench protection)
when viable future models (~20T) will start hitting the testing
facilities

« Benefits of database of “lessons learned” on Magnet Test
Facilities

$& Fermilab
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