

Quench protection: CLIQ and Quench heaters

Vittorio Marinozzi 2nd International Magnet Test Stand Workshop 8-9 May, 2018

Outline

- Quench protection of high-energy magnets
- Quench heaters: working mechanism
- CLIQ: working mechanism
- Quench heaters vs CLIQ
- Conclusions

Quench protection of high-energy magnets

- During a quench, the electromagnetic energy stored into the magnet is dissipated into the normal zone (usually, small volume)
- First approach: extract the energy

- EE is limited by the voltage (~ 1 kV)
- For high-energy magnets, this method is generally not sufficient to ensure protection
- Need of active methods: CLIQ and quench heaters

Quench protection of high-energy magnets

- CLIQ and quench heaters are active methods to protect the magnet
- Main goal: induce a quench in the largest volume as possible
- Energy is not extracted, but it is dissipated inside the magnet
- Average temperature is increased, but hot spot temperature is reduced

• Quench heater is basically an RC circuit

- The quench heater efficiency depends on:
 - HFU capacitance
 - Voltage
 - Number of HFUs
 - Heater-coil insulation thickness
 - Heater strips resistance
 - Heater strips design and position
 - Heater strips degradation
 - Conductor properties
- Combination of test stand availabilities and magnet design

• Example: MQXFAP1 at BNL

- 24 heater strips
- 12 HFUs
- HFU voltage: 600 V (± 300 V)
- HFU capacitance : 12.4-14 mF
- Heater strip resistance: 1.7-1.1 Ω (10 K)
- Peak power density: 100 210 W/cm²
- Time constant: 50-30 ms
- Insulation thickness: 50 µm
- Quenching time: 7 30 ms

- CLIQ: Coupling Loss Induced Quench
- CLIQ exploits the coupling currents between filaments and strands, in order to induce a spread quench in the whole magnet
- Main advantage: more effective heat deposition with more robust electrical circuit

‡Fermilab

11

- The CLIQ efficiency depends on:
 - CLIQ capacitance
 - CLIQ charging voltage
 - Number of CLIQ units
 - Number and position of the CLIQ connections on the magnet
 - Magnet size
 - Magnet geometry
- Combination of test stand availabilities and magnet design

LHC full size main dipole

• Example: commissioning at FNAL for MQXFS

Cliq has been successfully tested on several magnets:

- MB (spare LHC main dipole)
- MQY (spare LHC individually powered quadrupole)
- MQXC
- HQ02
- MQXFS1, MQXFS3, MQXFS5
- MQXFAP1
- 11 T dipole
- Small-scale solenoid
- Small-scale HTS coil

- Example: MQXFAP1 at BNL
 - 1 CLIQ unit
 - CLIQ capacitance:
 40 mF
 - CLIQ charging voltage: 500 V
 - MIITs reduction respect to QH: ~15 %

Quench Heaters vs CLIQ

QUENCH HEATERS	 Simple implementation in the test station Quench heater circuit independent on the magnet circuit Redundant Independent on length 	 Damaged strips cannot be repaired High voltage components very close to coils Risk of shorts with coils Bubbles when in contact with helium
CLIQ	 More efficient to induce quench Electrically robust External to the magnet Easy to repair Slightly dependent on conductor properties 	 Need to implement parallel components in the test station Implementation in the circuit not trivial (especially with EE) 1 unit is fully not redundant Effectiveness reduced with magnet length (short models do not fully demonstrate protection)

Conclusions

- CLIQ and Quench Heaters are active protection systems, needed to protect high energy magnets
- Quench Heaters implementation in a test station is relatively simple, but probability of electrical issues is larger
- CLIQ is more robust and efficient, but the implementation in the test station circuit is not trivial
- Just one CLIQ is not completely redundant, so it should be implemented together with a quench heaters system, or with other CLIQ units (complexity of circuit/connections)
 - "Third generation" CLIQ units will ensure redundancy of all internal components
- Presence of HFUs in a test station today is mandatory to test large magnets. Adding a CLIQ unit ensures more efficiency and redundancy, and possibility to test more performing magnets in the future.