

AC losses quantification in Nb₃Sn magnets

H. Bajas

2nd International Workshop on Superconducting Magnet Tests Stands

Hugo Bajas, 2IWSMTS, 08-05-2018

Outline

- Origin of the AC loss
- Measurement technique
- Experimental result
- Simulation result

LHC-MTA-IN-2000-131 2000-10-17

Energy loss and field advance in MBP2O1 prototype magnet at different ramp rates

A. Akhmetov, Z. Ang, I. Balaazi, L. Bottura, M. Gateau, P. Pugnat, L. Walckiers / LHC-MTA

Keywords: Dipole magnet, Energy loss, Field advance, Interstrand resistance

Distribution: LHC-MTA Scientific Staff; LHC-MMS distribution list; N. Siegel / LHC-ICP; L. Evans / DG-DI; Ph. Lebrun, T. Taylor / LHC

MTA-IN-2002-208 November 18, 2002

Analysis program LMA – Loss Measurement Analysis.

N. Ponomarev, F. Patru, L. Denia, L. Bottura, LHC/MTA

Keywords: Magnet test, field measurement analysis, loss measurement analysis, inductance, LMA library

Distribution: MTA Group

Origin of AC losses

- There are 3 main sources of loss when a transport current is ramped in a superconducting magnet.
 - Hysteretic magnetization loss (i.e. flux flow combined with flux pinning, results in a net energy loss when subjected to a field cycle)
 - Proportional to the superconductor Jc and filament size (Deff)
 - Inter-strand coupling loss (ISCC) and Inter-filament coupling losses (IFCC)
 - Combination of individual superconducting filaments and a separating normal-metal matrix results in a coupling Joule loss
 - Low thanks to the use of cored cable
 - Low at the typical ramp-rate of an accelerator as LHC/FCC (10 A/s)
 - Eddy currents in normal-metal
 - Iron yoke and saturation effect

Fig. 19. Coupling currents flowing via crossover resistance Rc in transverse field (upper wires shown light grey).

Fig. 18. Crossover resistance R_c and adjacent resistance R_a

Origin of AC loss

First estimate of AC losses: Hysteresis losses

Origin of AC loss

First estimate of AC losses: Coupling losses

$$\tau = \frac{\mu_0}{2\rho_t} \left(\frac{p}{2\pi}\right)^2 \qquad q_{coupling} = \frac{(dB/dt)^2}{\mu_0} 2\tau \quad [\text{W/m^3}]$$

$$Q_{coupling-tot} = Q_{coupling} * V_{cond}$$

Coupling loss reduction:

- minimize twist pitch

AC losses measurement

□ Measurement issues in superconducting magnet

□ The AC losses are delicate measurements as one has to detect *Joules* (resistive) over *hundreds of kJ* (inductive voltage).

 \Box It requires **High Resolution/precision Digital MultiMeters** (DMM 1 uV ± 0.01%).

- Measurement requires to perform a great number of cycles at different ramp rate and level of current. Those are time-consuming measurements that are not systematically done.
- □ Need a performant framework for **automatic analysis** over 10th of file, 100th of cycle, 10th of voltages.

Measurement Procedure (hardware)

- Measurement of the voltage across the coil using the voltage taps signals acquired with high precision high resolution DMN Measurement of the transport current using DCCT signals
- Numerical integration of the power over current ramp cycle.

Current cycle between two level of current @ different ramp rates

Current cycle between two level of current @ different ramp rates

Importance of the cycle and offset definition!!

11

P = U.I

Measurement final result (example on SMC11T - RRP)

AC loss as function of the ramp rate (linear fit)

AC loss as function of the current (quadratic fit)

Measurement final result (example on SMC11T4 - PIT)

11/08/2017 TE-MSC-TF

11/08/2017 TE-MSC-TF

Another example of RMC...

Result for RMC_QXF

Vsum

Example of analysis on MQXFS5

All coil

All coil

Simulation with Roxie (11T dipole)

11 T (2 apertures) loss per cycle (up+down) \approx 7 kJ/m

Measured losses on 11 T short model MBHSP012

Strand magnetization, which depends on

Sub-element diameter (d_{sub}) Critical current density (non-Cu) (J_c) Cu/non-Cu ratio (λ)

$$M(B) \propto d_{sub} \cdot J_c \ (B) \cdot \frac{1}{\lambda + 1}$$

Margin to guench (%)

80.87

Roxie Model Input

- Superconductor current density as specified for HiLumi
 - $T_{c0} = 16 K$
 - B_{c20} =29.38 T
 - *α* = 0.96
 - $C_0 = 188870 \text{ A/mm}^2 \text{ T}$
 - 3 % cabling degradation

$$J_{C} = \frac{C(t)}{B_{p}} \cdot b^{0.5} \cdot (1-b)^{2}$$

$$C(t) = C_0 \cdot (1 - t^{1.52})^{\alpha} \cdot (1 - t^2)^{\alpha}$$

- Reference: $D_{eff} = 50 \mu m$, no reduction due to flux jumps
- Sensitivity analysis to:
 - Effective filament size $D_{eff} = 20 \ \mu m$, $D_{eff} = 50 \ \mu m$
 - Reduction of strand magnetization at low field due to flux jumps χ = 0.5-1

Courtesy of P. Ferracin

Roxie Model Input

Margin on the loadline

Temperature margin at nominal current

Iron mesh and vector potential

Courtesy of S.I. Bermudez and F. Murgia

Modelling SC magnetization

- Semi-analytical hysteresis model for the superconductor, developed in [1], and implemented in ROXIE [1].
- Limited accuracy at low field, partially due the reduction on magnetization observed in Nb₃Sn due to flux jumps [2], which can be overcome by introducing a reduction on the strand magnetization below a given field level.
- Model has been validated in 11 T [2] and MQXF [3] magnets

[1] C. Vollinger, Superconductor magnetization modelling for the numerical calculation of field errors in accelerator magnets. PhD thesis, 202
[2] S. Izquierdo Bermudez, et.al, Persistent Current Magnetization effects in High-Field Superconducting Accelerator magnets, IEEE 2016
[3] S. Izquierdo Bermudez, et.al, Magnetic Analysis of the Nb3Sn low-beta Quadrupole for the High Luminosity LHC, IEEE 2017

ROXIE vs AC loss measurement: 11T

 Measured ramp up + ramp down around 6 kJ, 6/1.7= 3.6 kJ/m for a single aperture (ROXIE gives 4 kJ/m, a bit conservative, but good enough for a first approximation).

11 T - Magnetization loss per aperture (Deff = 0.046 mm, RRP 108/127)	ROXIE	
	J/m	J/m3
Pre-Cycle (0- 11.85 kA-0.1 kA)	4133	8.139E+05
Ramp up (0.1 kA -11.85 kA)	1853	3.650E+05
Ramp down (11.85 kA - 0.1 kA)	2207	4.346E+05
Ramp down + Ramp up	4060	7.996E+05
(11.85 kA-0.1 kA-11.85 kA)		

Measured losses on 11 T short model MBHSP012

ROXIE vs AC loss measurement: MQXFS

 Measurements: 7.5 kJ/m, so reasonably close to the 8.3 kJ/m predicted by ROXIE (actually Jc is 5 % lower than the spec in MQXFS5, so the difference is explained with that)

MQXF - Magnetization loss	ROXIE	
(Deff = 0.039 mm, PIT bundle)	J/m	J/m3
Pre-Cycle (0-16.47 kA-0.1 kA)	8474	5.994E+05
Ramp up (0.1 kA -16.47 kA)	3782	2.675E+05
Ramp down (16.47 kA -0.1 kA)	4503	3.186E+05
Ramp down + Ramp up	8286	
(16.47 kA-0.1 kA-16.47 kA)	0200	5.861E+05

Conclusion

- If the theory behind AC loss is well understood, the literature about Nb₃Sn magnet is rather limited and mainly referring to ITER magnet (central solenoid pulse mode).
- Experimental results on recent Nb₃Sn magnet shows values one order of magnitude higher than NbTi (0.5 kJ/m vs. 8 kJ/m)
- A large amount of **experimental data is now available** from (SMC, RMC, 11T, MQXF) with a defined procedure for AC loss quantification.
- A **new framework of analysis** has been developed following literature procedure to process a large number of files (including old file with different format) can now be treated massively.
- So far only **electrical method** has been used. Next would be to perform **calorimetric method**.
- Simulation work is just recently started at CERN...
- Subsidiary goal... can we simulate quench current versus ramp rate using AC loss measurement?

Thank you for your attention!

