ANNIE reconstruction using LAPPDs

Jingbo Wang
Department of Physics, UC, Davis

Outline

- ANNIE goals
- LAPPDs in ANNIE
- Phase II simulation
- Phase II reconstruction using LAPPDs
 - Two detector configurations (w/o 5 LAPPDs)
 - Vertex and track reconstruction
 - Energy reconstruction
 - Momentum transfer study
- Summary

ANNIE

- ANNIE: Accelerator Neutrino Neutron Interaction Experiment
- 26-ton Gd-loaded water Cherenkov detector placed downstream of the Booster Neutrino Beam (BNB) at Fermilab (flux peaked at 700 MeV, relevant to atmospheric neutrinos)
- Two main goals:
 - Measure the neutron multiplicity from neutrino-nucleus interactions in water
 - Demonstrate the use of fast-timing LAPPDs for event reconstruction
- Finished taking background data (Phase I), soon to be taking physics data (Phase II)

LAPPDs in ANNIE

ANNIE is the first application of LAPPDs in HEP experiment

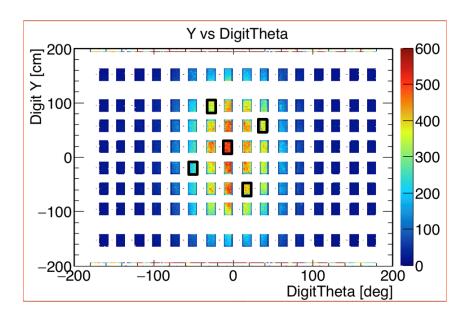
- LAPPDs have been commercialized by Incom.
 (ANNIE already has a few.)
- LAPPDs are tested at ISU (Matt's talk tomorrow)

Large Area Picosecond Photodetectors (LAPPDs) are MCP-based photodetectors

- Flat, Large-area: 20 cm × 20 cm
- Picosecond timing: <100 ps for SPE
- Quantum efficiency: >20%
- Position resolution: sub-mm
- Lower Cost per Unit Area
- Atomic Layer Deposited MCP

Why does ANNIE need LAPPDs?

LAPPDs are key detectors for the ANNIE physics measurement


- Simulation shows that neutrons created in ANNIE can drift up to 2 meters.
 - In the direction transverse to beam, drift is symmetric
 - In the direction along the beam, drift is mostly forward with respect to the interaction point.
- In order to get a clean sample of neutrons, the analysis must be restricted to a small ~1 ton fiducial volume far from the walls of the tank to capture the neutrons
- To properly identify events in FV, vertex resolution of ~ 10 cm is needed
 - This is beyond the capability of traditional PMTs!
 - LAPPDs use fast-timing to localize the vertices, which is essential for ANNIE analysis

Simulation to study the LAPPD capability

- ANNIE Phase II proposal: WCSim simulation
- Investigated event reconstruction capability using two different photodetector configurations:
 - PMT-only configuration including 128 8-inch traditional PMTs (about 20% coverage of the inner surface of the tank).
 - LAPPD+PMT Combined configuration including 128 8-inch conventional PMTs
 and additional 5 LAPPDs on the downstream wall of the tank.

Phase II Reconstruction Strategy

We are developing reconstruction techniques

- 1) Vertex and track are reconstructed using maximum likelihood fit. The challenge is to handle two different types of photodetectors in the same framework
- 2) Track length in MRD is reconstructed by fitting the hit position in all MRD layers
- 3) Track length in water is reconstructed using Deep Learning Neural Network machine learning algorithm
- Neutrino and muon energies are reconstructed using Boosted Decision Tree machine learning algorithm
- 5) Q² is calculated assuming CCQE events

Vertex and track reconstruction

- A single muon track can be specified by 6 kinematic variables:
 - A vertex position (X, Y, Z)
 - A vertex time (T)
 - A track direction (θ, ϕ)
- Measurement from photodetectors
 - Hit position and time
 - Hit charge

Basic strategy:

- A timing-based likelihood (FOM_{time}) function is used to fit the vertex position and time
- A charge-based likelihood function (FOM_{cone}) is used to fit the cone-edge then the track direction
- Six parameters are varied and the combined likelihood functions is used to fit the track

Constraints in two directions

- With timing, constraint transverse to the muon direction is much stronger
- Along the muon direction there is an ambiguity issue of T₀
- Timing places a weak constraint on T_o Scattered light helps a little bit, but it's not enough
- Cone-edge offers better constraint to T_0 , which depends on the photodetector coverage and position resolution
- In ANNIE, the strong transverse constraint is dominated by 5 downstream LAPPDs, and the longitudinal constraint is strengthened by the PMT coverage

Distance between truth and reconstruction in two directions

Vertex resolution comonents

Vertex Displacement: Δr

Idealized reconstruction: take the true vertex and track direction as the seed for the track fit

- Muons that are produced within a fiducial volume and stop inside the MRD are selected
- LAPPDs show significant improvement on the vertex resolution
- 128 PMT-only (20% coverage) : 38 cm
- 5 LAPPDs + 128 PMTs : 12 cm (more than a factor of 3!)

Track Angular Displacement: Δφ

Idealized reconstruction: take the true vertex and track direction as the seed for the track fit

- 128 PMT-only (20% coverage) : 10 degree track angle resolution
- 5 LAPPDs + 128 PMTs: 5 degree track angle resolution (a factor of two improvement!)

Angle between the true and the reconstructed muon tracks

Track length reconstruction

- Muon energy is measured as the sum of energy deposit in water and MRD
- Track length in the water tank is calculated using a Deep Learning Neural Network (from Tensorflow package).
- Tracks in MRD are reconstructed in two 2D views and then matched into a 3D view
- MRD reconstruction is done in a separate framework. For the present studies, the track length is calculated as the distance between the true entry and stop points of the muon (neglect scattering)

Energy reconstruction

- Boosted Decision Trees (BDT) machine learning algorithm was used
- Select CCQE events with E_v< 2GeV
- Select events with muon stopped within the MRD
- The algorithm is trained with multiple input parameters

Input Variables:

- Track length in water and MRD
- Angle difference between the reconstructed track direction and the beam direction
- The total number of hits in PMTs and LAPPDs
- The reconstructed vertex coordinates
- The distances of the reconstructed vertex from the detector walls (D_R, D_V)

Energy Reconstruction

- Figure of merit: $\Delta E/E = 100 * (E_{true} E_{reco}) / E_{true}$
- The muon (neutrino) energy resolution achieved at the 68th percentile of all reconstructed events from the sample is 10% (14%).

 $\Delta E/E$ [%]

arXiv:1803.10624

Momentum transfer reconstruction

- Assuming CCQE interaction, the reconstructed muon and neutrino energies, together with the muon angle are used to calculate the momentum transferred.
- Stopped muon events are selected for which the muon energy is measurable as the sum of energy deposited in the water tank and the MRD.

Momentum transfer reconstruction

- $\Delta Q^2 = Q^2_{reco} Q^2_{true}$, reconstructed by the ANNIE detector with 128 PMTs only and 5 LAPPDs + 128 PMTs
- The 1-sigma Q² resolution is extracted from the ΔQ² distribution for 4 bins in true Q².
- The addition of 5 LAPPDs improves the Q² resolution.

Work ongoing

- Improve algorithms to do a more realistic reconstruction
 - Seed finding
 - Maximum likelihood function
- Investigate Hough transform for ring counting
 - Doesn't work with ANNIE Cherenkov disk
 - Need edge detection
- Extend single-track fitter to double-track fitter
- Develop a likelihood fitter for Particle identification

More information in backup slides

Realistic reconstruction

Hough transform with edge detection

Summary

- In Phase I, ANNIE demonstrated neutron background is low enough.
- The key technological component of Phase II, LAPPDs, are now being produced by Incom Inc. ANNIE will deploy 5 LAPPDs for Phase II physics measurement.
- Simulation and Reconstruction tools for ANNIE Phase II are in place and show good performance.
 - Vertex & track reconstruction with PMT + LAPPD configuration
 - Machine learning tools are being developed for energy reconstruction
 - Q² improves with additional 5 LAPPDs
- ANNIE Phase II data taking is foreseen in late 2018.

Thanks for your attention! Qestions?

Backup

ANNIE detector

Scintillator paddles to **veto muons** not originating from the tank

3 m x 4 m tank
filled with

Front Anti-coincidence Counter (FACC)

Gd-loaded water volume

photosensors

Inside the tank:

26-ton Gd-loaded

water

>100 PMTs installed on the inner surface for detecting neutron capture

LAPPDs with < 100 ps time resolution for improved track reconstruction of muons.

How does ANNIE work?

- 1 Charge Current neutrino interaction in the fiducial volume
- 1 Neutrino vertex and muon direction reconstructed using **LAPPDs**
- 1 Muon momentum reconstructed by the MRD
- 2 Final state neutrons are getting thermalized in the water volume
- 3 Neutron capture on Gd emitting 8 MeV gammas
- 4 Gamma rays are detected by PMTs

Vertex and track reconstruction

 $(x_{hit}, y_{hit}, z_{hit}, t_{hit})$

Step1: "Simple vertex" fit

four parameter fit: (x, y, z, t)

- Conceptualize Cherenkov light as coming from a point source
- Assume a hypothesized point-source location $(x_{hyp}, y_{hyp},$ z_{hyp}, t_{hyp})
- For each photon hit, calculate the point time residual:

$$\Delta t = t_{hit} - \frac{L_p}{c/n}$$
 Photon travel time

- For all the hits, calculate the timing-based Figureof-Merit (timing likelihood)
- **Adjust four parameters** to maximize time FOM. FOM takes the maximum value when the width of the time residual distribution is minimized

 $(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp})$

Vertex and track reconstruction

Step2: "Extended vertex" fit

six parameter fit: $(x, y, z, t, \theta, \varphi)$

- Starting from the "simple vertex" obtained from step1, assume a hypothesized track $(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp}, \theta_{hyp}, \varphi_{hyp})$
- For each hit, calculate the extended time residual:

$$\Delta t = t_{hit} + \underbrace{\frac{L_p}{\frac{c}{n}}}_{\text{Photon travel time}} + \text{muon travel time}$$

- For each hit, compare the measured cone edge to the simulated one.
- For all hits, calculated the overall FOM
 (FOM_{time} + FOM_{cone})

$$(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp})$$

 $\theta_{hyp}, \varphi_{hyp})$

Adjust six parameters to maximize the FOM

Realistic reco: vertex resolution

- Find the seeds with 4-hit combinations
- 128 PMT-only (20% coverage): 70 cm (40 cm in idealized reco)
- 5 LAPPDs + 128 PMTs : 23 cm (15 cm in idealized reco)

Distance between the true and the reconstructed vertices

Realistic reco: track angular resolution

- 128 PMT-only (20% coverage) : 27 deg (13 deg in idealized reco)
- 5 LAPPDs + 128 PMTs: 9 deg (5 deg in idealized reco)

Angle between the true and the reconstructed muon tracks

Track length in water

- The track in water was initially reconstructed as the distance between the first and last Cherenkov photon emission point along the track (L).
- In order to improve the reconstructed track length in the water tank a
 Deep Learning Neural Network (from Tensorflow package) was used.
- The algorithm is trained on multiple input variables:
 - All Cherenkov photons emission points
 - Hit times
 - The previously estimated track length, L
 - The total number of hits in PMTs and LAPPDs

Track length in MRD

- To estimate the MRD track length a track is fit to the recorded hits in all layers
- Tracks are reconstructed in two 2D views and then matched into a 3D view
- MRD reconstruction is done in a separate framework and will be merged to the main software.
- For present studies, the track length is calculated as the distance between the true entry and exit points of the muon (neglect scattering)

Red: True track

Blue: Reconstructed cells

Green: Fit to cells

Hough transform works in 3D

- 1) Code works in 3D. We find the most overlapping direction, not radius
- 2) Draw a line from the vertex to the hit
- Rotate the line out of the page around the vertex by the Cherenkov cone angle
- 4) Rotate this line around the original line
- 5) Each point on the circumference is defined by (ϕ, θ) relative to z direction
- 6) Add a count at (ϕ, θ) for all hits at this cone angle
- 7) If angle is unknown, then need to change the angle and repeat the steps
- 8) Each peak in the (ϕ, θ) distribution is a ring center

Edge detection + Hough transform

- 1) Convert (x, y, z) to (ϕ, θ)
- Run filtering algorithm (use a simple ROOT::Smooth() function for now)
- 3) Set a threshold and convert the raw distribution to binary
- 4) Calculate gradients at both direction and get the magnitude
- 5) The pixels/bins with non-zero gradient are at the cone edge
- 6) Loop over the hits and only keep the hits close to the edge
- Run Hough transform

