Tellurium Loading in SNO+

Szymon Manecki, Queen's University THEIA Workshop, UC Davis, April 13th, 2018

SNOLAB Facility

SNO+ Detector

- 780 tonnes of (LAB) scintillator
- \circ Acrylic Vessel (AV) Φ = 12m
- o 9500 PMTs, 54% coverage
- Light water (H2O) shielding
- Urylon Liner/Radon Seal
- O Norite Rock

SNO+ Detector

SNO+ Physics Goals

Neutrinoless Double Beta Decay

Low Energy Solar Neutrinos

Reactor Antineutrinos

Geo-Neutrinos

○ Supernova-v

- Two neutrino double beta decay
 - Neutrinos are Dirac fermions

$$(2\nu\beta\beta)$$
 ~ 10^{18} - 10^{21} years $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\bar{\nu}_{e}$

- Neutrinoless double beta decay
 - Neutrinos are Majorana fermions

$$(ουββ) > 1025 years$$

(A,Z) -> (A,Z+2) + 2e⁻¹

- How to probe absolute mass scales?
 - Assuming the "see-saw" exchange of light

Majorana neutrino in ουββ; The decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2$$
 Where:

$$\langle m_{\beta\beta} \rangle^2 = |\sum_i U_{ei}^2 m_{\nu i}|^2$$

The bands allow freedom in the unknown CP phase and mixing matrix parameters

- How to design a good ουββ experiment?
 - (A,Z) -> (A,Z+2) + 2e⁻
 - A calorimetric measurement
 - Good energy resolution
 - Increase light collection
 - Large exposure time
 - Amount of source
 - Low backgrounds

$$T_{1/2} > \frac{\ln 2 \ \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

D.B.D. experiments need good energy resolution, low backgrounds, and large amounts of isotope.

- Why Liquid Scintillator Technology ?
 - High efficiency for rejecting muon follower and delayed coincidence backgrounds
 - Fiducialization to suppress external backgrounds
 - Pulse shape discrimination
 - Source in/source out
 - Possibility of re-purifying in-situ

Borexino Data: 150 tonne-years
Background reduction
methodology

LAB Scintillator

- Low cost
- High flash point 130°C
- Low toxicity

- Light attenuation length> 20 m at 420 nm
- High light yield (~10,000 photons/MeV)
- Smallest scattering of all scintillating solvents investigated
- Compatibility test with acrylic
- Metal loading possible
- Density r = 0.86 g/cm³

LAB Scintillator

- Detection principle and backgrounds
 - Any charged particle can cause scintillation
 - Neutrino electron scattering
 - Indistinguishable from β or γ
 - α's yes: higher stopping power
 - No directional information
 - Low υ interaction cross-section

<u>Background</u>	<u>Typical abundance</u>	<u>Goal</u>	<u>Borexino</u>
238 U	2 x10 ⁻⁵ (dust) g/g	< 10 ⁻¹⁶ g/g	<9×10 ⁻²⁰ g/g
²³² Th	2 x 10 ⁻⁵ (dust) g/g	< 10 ⁻¹⁶ g/g	<7×10 ⁻¹⁹ g/g

Scintillator Purification Plant

Scintillator Purification Plant

- Multi-stage distillation
 - Dual-stream PPO distillation
 - Removes heavy metals
 - Improves UV transparency
- N₂ / steam stripping
 - Removes Rn, Kr, Ar, O₂
- Water extraction
 - Removes Ra, K, Bi

- Metal scavenging
 - Removes Bi, Pb
- Microfiltration
 - Removes dust

- Target Levels
 - 85Kr: 10⁻²⁵ g/g
 - 4°K: 10⁻¹⁸ g/g
 - 39Ar: 10⁻²⁴ g/g
 - U: 10⁻¹⁷ g/g
 - Th: 10⁻¹⁸ g/g

ονββ LS Requirements

- Reach high tellurium concentration
 - o.5% Te in 780 tonnes of scintillator
- Preserve good optics of the cocktail
 - Transparency, Scattering, Light Yield
- Maintain high purity of the scintillator
 - U/Th reduction factor
 - Cosmogenic activation

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

$$H_{2}O$$
 O
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{3}O$
 $H_{4}O$
 $H_{5}O$
 $H_{5}O$

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butanediol based Te complex ("TeDiol"):

Telluric Acid Production

 Te extracted from mine (depth ~ 300 m) in April 2014

- Visit to the production site prior to start of processing
- QA/QC tests on samples from each barrel before approval to send to SNOLAB

3.8 tonnes of Te(OH)₆, corresponding to ~2.1 tonnes Te, or ~0.26% Te loading

- Shipped to SNOLAB (January 7th 2015)
 - Transported underground on January 19th 2015
 - Testing one sample from one of the barrels to crosscheck previous results

Telluric Acid Purification

- The purification technique relies on solubility of TeA in water based on pH
 - Te(OH)₆ ←→ Te(OH)₅O⁻ + H⁺ in-soluble soluble
 - Insoluble contamination
 - Dissolve in water, and filter
 - Soluble contamination
 - Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the "dirty" liquid
 - The process can be made tellurium selective

Telluric Acid Purification

- o.5% Tellurium Target levels:
 - 1.3x10⁻¹⁵ g/g in ²³⁸U (3x10⁻⁸ Bq/kg)
 - 5x10⁻¹⁶g/g in ²³²Th (1.2x10⁻⁹ Bq/kg)
 - (raw Te ~10⁻¹¹ g/g U/Th, 10⁻⁴ Bq/kg)
- Cosmogenic contamination from activation on Te
 - 6°Co, 110mAg, 126Sn, 88Zr, 88Y, 124Sb
 - Rejection needed 10⁴-10⁵

Isotope	$t_{exp}=1 \text{ yr}$
$^{22}\mathrm{Na}$	15309
²⁶ Al	0.048
$^{42}\mathrm{K}$	565
^{44}Sc	102
46Sc	43568
⁵⁶ Co	2629
58 Co	25194
⁶⁰ Co	6906
68 Ga	37343
$^{82}\mathrm{Rb}$	18047
84 Rb	11850
88Y	390620
⁹⁰ Y	823
$^{102}\mathrm{Rh}$	276189
$^{102m}\mathrm{Rh}$	133848
¹⁰⁶ Rh	1534
110m Ag	69643
110 Ag	939
124Sh	3101138
$^{126m}\mathrm{Sb}$	240
¹²⁶ Sb	358996

10kg pilot-scale plant operated successfully Final design ~200 kg TeA/batch under construction

Telluric Acid Purification Plant

Telluric Acid Purification Plant

Butanediol Assay

- 14C/12C to confirm its non-biogenic origin
 - Accelerator Mass Spectrometry at uOttawa:
 - Sample #1: (14.3 ± 1.2) x 10⁻¹⁶ Blank #1: (26.0 ± 7.4) x 10⁻¹⁷
 - Sample #2: (4.8 ± 1.2) x 10⁻¹⁶ Blank #1: (2.5 ± 1.2) x 10⁻¹⁷
- Gamma-ray & NAA Assay

- HPGe@SNOLAB
 - ²³⁸U < 3.13 ppb
 - ²³²Th < 0.26 ppb
 - 4°K < 386.56 ppb

- NAA@UC Davis
 - ²³⁸U < 0.3 ppb
 - 232Th < 3.3 ppb</p>
 - natNa 2.2 ppb

Butanediol Purification

- Bench-top distillation with radio spikes
 - 228Th spike in 1,2-Butanediol
 - Low T (70 °C, 80 mTorr)

	Initial activity mBq/g	Distillate activity mBq/g	Reduction factor
²²⁸ Th	72	<0.014	>5100
²²⁴ Ra	72	<0.013	>5500

High T (170 °C, 225 Torr)

	Initial activity Bq/g	Distillate activity µBq/g	Reduction factor
²²⁸ Th	1.94	7 ± 1	280 000
²²⁴ Ra	1.94	13 ± 5	150 000

The TeDiol Plant

The TeDiol Plant

TeDiol & TeA Vessels

Backgrounds Budget

100% rejection in Rol

In-window trigger: x50 rejection

ονββ Sensitivity

■ 1.2 tonnes of ¹³⁰Te in LAB (at 0.5% ^{nat-}Te)

- [-0.5; +1.5] σ around $\Omega_{\beta\beta}$
- 390 NHits/MeV (~4% ΔE)
- Fiducial Volume: 20% total

	T _{1/2} [yr]	m _{ovßß} [meV]
1 yr	8x10 ²⁵	75.2
5 yrs	1.9X10 ²⁶	41-99
		(@coll6CL)

(@90% C.L.)

ουββ Sensitivity

SNO+ Timeline

- **2018**
 - Scintillator plant commissioning
 - Scintillator fill
 - Solar neutrino phase (short)
 - Evaluation of backgrounds for ουββ
 - Commissioning of the Tellurium plant(s)
- **2018-2019**
 - Tellurium loading
 - Begin ουββ phase

The PRS Surfactant

- Tellurium loading in Linear Alkyl Benzene
 - Aqueous Telluric Acid ("TeA") loaded into the scintillator using commercially available surfactant
- LAB based surfactant ("PRS"):

The PRS Surfactant

- Tellurium loading in Linear Alkyl Benzene
 - Aqueous Telluric Acid ("TeA") loaded into the scintillator using commercially available surfactant
- LAB based surfactant ("PRS"):

PRS Purification Goals

- Improvement in optical properties
 - Successfully demonstrated on a small to medium scale (purification, synthesis)
- Removal of radio-contamination and mitigation of cosmogenic ²²Na (ROI)
 - U/Th reduction factor ~10³x, or ~10⁻¹⁵g/g (if custom synthesized)
 - Na reduction factor ~10⁶x, or ~0 (UG synthesis)

- Water Extraction/Foam
- Metal Scavengers
- Nano Filtration
- Distillation
- Custom made PRS
- Combination of the above

- Water Extraction/Foam
- Metal Scavengers
- Nano Filtration
- Distillation
- Custom made PRS
- Combination of the above

- Water Extraction/Foam
- Metal Scavengers
- Nano Filtration
- Distillation
- Custom made PRS
- Combination of the above

- Water Extraction/Foam
- Metal Scavengers
- Nano Filtration
- Distillation
- Custom made PRS
- Combination of the above

- Water Extraction/Foam
- Metal Scavengers
- Nano Filtration
- Distillation
- Custom made PRS
- Combination of the above

40%LAS

PRS Summary

- A WbLS mix could be considered for THEIA with the following approach
 - Custom synthesized LAS (on surface)
 - Improved optical properties
 - Underground distillation
 - Reduction in cosmogenic ²²Na
 - Further reduction in U/Th (if needed)
- Due to the size of THEIA, the cost would be significant (potentially non-feasible)

SNO+ Collaboration

Backup

Solar Neutrino Potential

 In future phases of the solar neutrino program the AV background contribution may be mitigated with an additional bag

THEIA

A water-based liquid scintillator detector

- 50kT water with up to 15% scintillator
- High light yield of organic scintillator
 - Low threshold
 - Good energy resolution
- Predominantly water
 - Low light absorption
 - Directional information

ονββ Sensitivity in Phase II

- Improve sensitivity by improving
 - Light yield and going to higher loading
 - Improve current technique
 - Higher QE PMTs
 - Improved concentrators
 - Coverage to 80%
- Goal: 3% nat. Te loading
 - ~ 8 tonnes ¹³⁰Te
 - Higher QE PMTS
 - $T_{1/2}$ onbb ~ 10^{27} yr

ονββ Phase III R&D

 2x the Light Yield and same absorption with alternative approach at 3%Te

