THEIA Long Baseline Physics

Mike Wilking, Stony Brook University THEIA Workshop at UC Davis April 13th, 2018

LBL Sensitivity Strategy

- Short term: Update LBNE water sensitivities based on last 10+ years of reconstruction improvements (FiTQun) and analysis updates
 - Sensitivities based on recent Super-K MC (just as LBNE studies)
 - Results are directly comparable to previous LBNE/DUNE sensitivities
 - WbLS is likely to be a small (negative) perturbation for LBL sensitivities
 - When we better understand how to reconstruct and utilize this extra information in the future, sensitivities may be further improved
- Unfortunately, we didn't quite complete step 1 for this meeting, but we are close, and recent progress will be shown today
- Longer term: Assess additional information that can be gained by WbLS (& faster photodetectors)
 - FiTQun has been adapted to run on (GEANT4-based) WCSim, and adapting it to also run on RAT-PAC should be straightforward
 - Original FiTQun mathematical formalism is based on MiniBooNE reconstruction (arXiv:0902.2222), and can naturally handle scintillation + Cherenkov light (with a bit of extra code work)
 - L. Pickard (UC Davis) is also made good progress on high-energy Cherenkov + scintillation reconstruction; additional collaboration may be useful

Reminder of LBNE Studies

- LBNE beam with a water Cherenkov detector at Homestake
- Prior studies (LBNE) made the following assumptions:
 - 1. Only single-ring events are selected (~20% ve-CCnQE efficiency)
 - Largest interaction mode at DUNE energies of ~2-3 GeV is resonance (CCπ) events
 - 2. Neutral current background rejection is based on older reconstruction tools (pre-FiTQun and even pre-POLFit)
- Both of these assumptions are being revisited with updated reconstruction tools

"1-Ring" ve-CCπ+

- A significant fraction of v_e -CC π^+ events at T2K have a pion below Cherenkov threshold
 - These are still v_e appearance events and can be used for CP violation measurements
 - The π^+ can be tagged by the decay electron it produces (e-like ring delayed by ~2 µs)
- In previous ν_e selections at Super-K, 0 decay electrons were required to remove ν_μ background
 - FiTQun PID improvements no longer require this cut
- Eventually, in THEIA, we may have a better tag of below Cherenkov pions via scintillation (if separable from protons, etc.)

FiTQun 0 vs 0+1 Decay-e

- By relaxing the zero decay electron requirement, can enhance the "1-ring" CCπ⁺ events
 - Very large gain in 1-ring ve CCnQE efficiency
 - These events have the largest cross section in the oscillation maximum
 - Efficiency is already increased more than 50% in the 2-3 GeV region

FiTQun no Rejection

 Dedicated π⁰ fitter with two electron/photon hypothesis rings produced at a common vertex (includes photon conversion lengths)

- To reject π^0 : Compare best fit likelihoods of π^0 fit & single-e fit (as a function of reconstructed π^0 mass)
- Large improvement in finding low energy 2nd ring
 - ~70% reduction in π^0 background relative to POLFit (but not even POLFit was used in the LBNE studies)

π⁰ Cut at Higher Energies

• The current π^0 cut is not optimized for high energy events

- π^0 background in LBNF beam piles up at low energy (where FiTQun π^0 cut is most effective)
- Still, need to retune the cut to be effective up to 2-3 GeV

First Attempt at mo BDT Cut

 Relevant π⁰ fit and single-e fit variables were used as inputs for a boosted decision tree

First Attempt at mo BDT Cut

LBNE Results (all 1-ring, 0 Michels)

- Good NC separation seen for all 3 new samples
 - Also recall that the new selection also starts with better precut NC rejection

BDT Next Steps

- Current cut removes "easier" π⁰s at low energies without cutting much at high energy
- Need to separately train BDTs in different E_{ν} bins to allow us to specifically remove backgrounds in the oscillation region

FiTQun, 1-ring samples (SK1 NC smearing)

SK1, 1-ring samples

2-Ring Selection Results

- "Efficiency" defined relative to all $CC\pi^+$ events (including below-Cherenkov π^+ , absorption or charge exchange in the nucleus or water, etc.)
- 2-ring, 1 decay-e (i.e. "Natural") selection for v_e -CC π^+ shows >10% efficiency throughout the oscillation region
- v_{μ} background is currently higher than is desirable; some additional event selection work is required

Increased Fiducial Volume

- Previously in Super-K, event vertices required "wall" > 2 m
- Starting this summer, T2K events will be selected based on "wall" and "towall"
 - An event with small "wall", but large "towall" can be perfectly well reconstructed
 - Reconstruction performance degrades with small "towall", even if "wall" > 2 m
- New, expanded FV increases oscillated v_e events by ~25%

Improvement Roadmap

• Near term:

- Retrain BDT cut as a function of neutrino energy to remove higher-energy π^0 background events
- A first selection of "1-ring" v_e -CC π + events is now included in the analysis
 - \sim 25% increase in ν_e statistics with slightly better purity
- Also plan to expand the **fiducial volume** (as has been done recently at Super-Kamiokande)
 - At SK, achieve $\sim 25\%$ increase in 1-ring v_e statistics with similar purity

• Medium term:

- First pass multi-ring v_e -CC π + event selection is now available
 - Some additional work needed to reduce v_{μ} background

• Longer term:

• Reduction of neutral current and non-QE backgrounds in the ν_{μ} disappearance sample

Summary and Next Steps

- Very close to a new, complete δ_{CP} sensitivity analysis with the improved event selection
 - Person-power ramp up over the past few months
 - ~25% of an SBU postdoc Guang Yang, dedicated SBU undergraduate, good collaboration with Elizabeth Worcester to produce GLoBES sensitivities
 - Hope to finish first sensitivity improvement over the next few weeks
- Also plan to continue to push medium term goals (multi-ring samples) and longer term goals (FiTQun-based Cher+scint reconstruction of WbLS)

Supplement

Reminder: NC Impact on Sensitivity

- \bullet T2K has achieved a ~70% reduction in NC π_0 events relative to initial projections using FiTQun
- Updated LBNE sensitivities were presented at the first FroST meeting by E. Worcester
 - 40 kt of LAr produces the same sensitivity as 100 kt of water (if 75% $NC\pi_0$ reduction)
- However, Π_0 reduction at **higher E_v** is **unexplored** (E_{v,T2K} \approx 0.7 GeV & E_{v,DUNE} \approx 2.5 GeV) and is **more difficult** (increased boost = softer 2nd photon ring)

Updated no Rejection

Standard Pizero Reconstruction

- Below $p_{\pi 0}$ of 1 GeV/c, FiTQun is much better than previous algorithms
 - Most of the DUNE NCπ^o background has a reconstructed E_V < 1250 MeV (current T2K cutoff)
 - Large improvement for 2nd oscillation maximum
- How much better can FiTQun do at 2 GeV?
 - Original LBNE optimization used a multi-variate analysis

More study needed

Single pizero criteria:

85 < mass < 185 MeV Zero mu-e decay

Two rings

Both rings e-like

Fully Contained

Fiducial Volume

LBNE ve Efficiencies

- LBNE studies based on SK1/SK2 MC
- Standard ve "pre-cut" selection applied
 - 1-ring, e-like, with ZERO decay electrons
- "Post-cut" is an additional cut designed to remove piO events

Multi-Ring Events

- If multi-ring $CC\pi^+$ and $CC\pi^0$ events can be selected, large gains in the sensitivity are possible
 - Largest cross section at the oscillation maximum
 - Existing analysis has <20% efficiency at oscillation maximum
- Studies of multi-ring CCπ⁺ selections are underway in T2K and Hyper-K
 - Hope to use lessons learned to produce first estimates for THEIA

Hit Charge Distribution

Reconstructed Predicted Charge

THEIA Multi-ring Selection (First Look)

- Multi-ring fitter counts electron, muon, and pion rings
- Above-Cherenkov Pions often interact hadronically
 - Produces "thin" rings
 - Multi-ring fitter can find more than 1 ring belonging to the same pion (i.e. 2 or 3 ring events)
- First out-of-the-box look at multi-ring CCπ⁺ selection
 - For now, require 2-ring $e + \pi^+$ is the best fit hypothesis, where the electron is the most energetic ring
 - Quite restrictive / conservative
 - More efficiency should be recoverable with a more careful analysis

ν_μ Selection: π+ Background Reduction

Fraction of apfit selected events removed:

- Significant reduction of NC background due to π₊ rejection
 - NCπ+ background has a very large uncertainty (>50%) and piles up near the oscillation dip
- Improved sensitivity to θ_{23} & Δm_{232}
- First implementation in T2K this summer

