NLDBD SEARCHES

Current status for the white paper discussion

STATUS

- First draft of the NLDBD section of the white paper is available
- Updated RAT-PAC with THEIA 0nbb geometry, PMT and SNO+ LS properties (only locally available)
 - Under investigation: 136Xe (89.5% enr.) or 130Te (nat.)
- Initial simulation of key backgrounds
- Initial sensitivity studies

SIMULATION

Chris G. & Aobo

- Simple geometry with inner balloon of 6.4 or 8* m filled with 3% loaded scintillator
 - Scintillator model from SNO+ (LAB PPO)
- PMT model with 5% coverage to speed up the simulation
 - Still very time consuming, with up to 24-48 hr per 5000 events
 - Major MC work: geometry, grey disk model, photo thinning, sim. speed
- 10% WbLS outside the balloon
- Simulation available at BU and MIT (ntuples and ratds)

BACKGROUNDS INCLUDED

Valentina

Included only main backgrounds in the simulation

Table 1: Expected main background sources for the search of neutrinoless double-beta decay with THEIA. Shown are the target levels and the expected events/yr. The values are obtained considering a ballon with 6.4 m and 8 mradius and a density of 0.86 g/cm³. It is assumed that the Te or Xe isotopes are directly loaded at a level of 3% in the LAB+PPO scintillator cocktail, for a total mass of 28.3 tonnes (6 m radius) or 55 tonnes (8 m radius).

Source	Target levels Expected events/y		Expected events/yr
		for $r=6.4\mathrm{m}$	for $r = 8 \mathrm{m}$
¹⁰ C balloon		250 - 800	500 - 1600
⁸ B-neutrinos		1650	3200
¹³⁰ I (Te target)		48 (9 from ⁸ B)	93 (18 from ⁸ B)
¹³⁶ Cs (Xe target)		24 (3 from ⁸ B)	47 (6 from ⁸ B)
$^{136}\mathrm{Cs}$ (89.5% enriched Xe		245 (35 from ⁸ B)	478 (68 from ⁸ B)
target)			
$2\nu\beta\beta$ (Te target)		3.8×10^{7}	7.4×10^{7}
$2\nu\beta\beta$ (Xe target)		3.6×10^{6}	7.0×10^{6}
$2\nu\beta\beta$ (89.5% enriched Xe		3.6×10^{7}	7.1×10^{7}
target)			
Liquid scintillator	$^{214}\text{Bi: }10^{-16}\text{g}_U/\text{g}$	37000	73000
	208 Tl: 10^{-16} g _{Th} /g	4400	9000
Nylon Vessel	²¹⁴ Bi: $1.1 < \times 10^{-12} g_U/g$	7.7×10^4	1.2×10^{5}
-	²⁰⁸ Tl: $1.6 < \times 10^{-12} g_{Th}/g$	1.3×10^4	2.1×10^{4}
PMTs	$^{214}\text{Bi: }10^{-6}g_U/\text{PMT}$		
	$^{208}\text{Tl: }10^{-6}g_{Th}/\text{PMT}$		

BACKGROUNDS INCLUDED

Valentina

Define the required background reduction from sensitivity studies

Table 1: Expected main background sources for the search of neutrinoless double-beta decay with THEIA. Shown are the target levels and the expected events/yr. The values are obtained considering a ballon with 6.4 m and 8 mradius and a density of 0.86 g/cm³. It is assumed that the Te or Xe isotopes are directly loaded at a level of 3% in the LAB+PPO scintillator cocktail, for a total mass of 28.3 tonnes (6 m radius) or 55 tonnes (8 m radius).

Source	Target levels	Expected events/yr	Expected events/yr	
		for $r=6.4\mathrm{m}$	for $r = 8 \mathrm{m}$	
¹⁰ C balloon		250 - 800	500 - 1600	Three fold coincidence
⁸ B-neutrinos		1650	3200	
¹³⁰ I (Te target)		48 (9 from ⁸ B)	93 (18 from ⁸ B)	
¹³⁶ Cs (Xe target)		24 (3 from ⁸ B)	47 (6 from ⁸ B)	
$^{136}\mathrm{Cs}$ (89.5% enriched Xe		245 (35 from ⁸ B)	478 (68 from ⁸ B)	
target)				
$2\nu\beta\beta$ (Te target)		3.8×10^{7}	7.4×10^{7}	
$2\nu\beta\beta$ (Xe target)		3.6×10^{6}	7.0×10^{6}	
$2\nu\beta\beta$ (89.5% enriched Xe		3.6×10^{7}	7.1×10^{7}	
target)				
Liquid scintillator	$^{214}\text{Bi: }10^{-16}\text{g}_U/\text{g}$	37000	73000	Delayed coincidence
•	208 Tl: 10^{-16} g _{Th} /g	4400	9000	Alpha/beta discrimination
Nylon Vessel	²¹⁴ Bi: $1.1 < \times 10^{-12} g_U/g$	7.7×10^4	1.2×10^{5}	
	208 Tl: $1.6 < \times 10^{-12} g_{Th}/g$	1.3×10^{4}	2.1×10^4	FV cut, time distribution
PMTs	$^{214}\text{Bi: }10^{-6}g_U/\text{PMT}$			
	$^{208}\text{Tl: }10^{-6}g_{Th}/\text{PMT}$			ı

BACKGROUNDS: LAB-PPO

Valentina

- Purity level of 10-18 in both U and Th has been demonstrated by Borexino:
 - U-238: $< 9.7 \times 10^{-19}$ g/g (95% CL from 214Bi-Po)
 - Th-232: $< 1.2 \times 10^{-18} \text{ g/g} (95\% \text{ CL from } 212\text{Bi-Po})$
- Reduction:
 - Assumed 100% reduction of Bi-Po events in ROI. This is true for delayed coincidences, but need to verify the fraction that falls in the same trigger window
- Adding the isotope will probably worsen the purity. Purity can be reduced by a factor 100 (10-16 g/g)

BACKGROUNDS: C-10

Valentina

- One of the dangerous isotopes for the NLDBD study are the C-10 atoms.
 - Expected 500 1600 events/yr in THEIA inner balloon.
 - Demonstrated by KamLAND/Borexino 60% reduction of muon induced background by triple coincidence

BACKGROUNDS: B8-NEUTRINOS

Valentina

- The most dominant background in the ROI is due to 8B interactions.
 - Reduction using directionality?

SENSITIVITY STUDIES

Andy & Chris J.

- Goals are the following plots:
 - Background reduction requirements (X axis background reduction, Y sensitivity)
 - one curve for the 28 tonnes isotope loading (1 kt balloon with 3% loading)
 - ~10 t of 130Te, 25 t of Xe at 89.5% enr.
 - one curve for the 55 tonnes loading (1.8 kt balloon with 3% loading)
 - ~19 t of 130Te, 50 t of Xe at 89.5% enr.
 - Energy resolution requirements: plot with 6% and 3%.

SENSITIVITY STUDIES

Andy & Chris J.

Presentation from Andy