## **Antineutrinos for Theia**



### Outline

- 2 10 MeV electron antineutrinos from reactors and Earth detected with IBD at Homestake
- Not discussing SN
   v or
  DSNB in this talk



## Estimated Anti-nu Signal

*R*<sub>total</sub> = 77.2 TNU



1 kT H<sub>2</sub>O contains  $0.668559 \times 10^{32}$  free protons

## Geo-neutrino Signal Estimate- I

### Geophysics

- K, Th, U in silicate mantle and crust not in metallic core
- 8 geophysical reservoirs defined by seismology in mantle and crust
- Map directions of mass per area per solid angle, or geophysical response, of each reservoir
- Relatively well known (± few %) compared with abundances of K, Th, U in each reservoir





# Geophysical Response

SURF

g/cm<sup>2</sup>/.1745 msr



#### Sediment

Upper Continental Crust

# Geophysical Response

SURF

g/cm<sup>2</sup>/.1745 msr



Lower CC

 Continental Lithospheric Mantle



# Geophysical Response

SURF



Azimuth

**Ocean Crust** 

cos(nadir angle)

· LID

· Mantle

### Geo-neutrino Signal Estimate- II Geochemistry

- Abundances of K, Th, U in 8 reservoirs assumed uniform- although assuredly heterogeneities
- Requires input from models: silicate earth and crust
- Largest source of error (± few 10 %)

| Reservoir/Isotope                 | U $(\mu g/g)$     | Th $(\mu g/g)$    | K (wt.%)                                                     |
|-----------------------------------|-------------------|-------------------|--------------------------------------------------------------|
| Upper continental crust           | $2.7 \pm 0.6$     | $10.5 \pm 1.1$    | $2.3 \pm 0.2$                                                |
| Middle continental crust          | $1.3 \pm 0.4$     | $6.5 \pm 0.5$     | $1.9 \pm 0.3$                                                |
| Lower continental crust           | $0.20 \pm 0.11$   | $1.3 \pm 0.9$     | $0.71 \pm 0.28$                                              |
| Continental lithospheric mantle   | $0.045 \pm 0.035$ | $0.24 \pm 0.19$   | $0.04 \hspace{0.2cm} \pm \hspace{0.2cm} 0.03 \hspace{0.2cm}$ |
| Sediment                          | $1.7 \pm 0.1$     | $8.1 \pm 0.6$     | $1.8 \pm 0.1$                                                |
| Oceanic crust                     | $0.07 \pm 0.02$   | $0.21 \pm 0.06$   | $0.07 \hspace{0.2cm} \pm \hspace{0.2cm} 0.02$                |
| Mantle (no radioactivity in core) | $0.011 \pm 0.009$ | $0.036 \pm 0.033$ | $0.016 \pm 0.013$                                            |

# Geo-neutrino Signal Estimate- III

**Physics** 

Fotal Cross Section per H<sub>2</sub>O (10<sup>-44</sup> cm<sup>2</sup>)

10

1

10

- Activities of K, Th, U well known (/g/s). Assume secular equilibrium for Th & U decay series
- Beta decay spectra, intensities, and branching ratios well known
- Average survival probability for distributed sources well known
- Antineutrino IBD (& ES) cross section(s) well known
- Relatively well known (± few %) compared with abundances of K, Th, U in each reservoir





### Geo-neutrino Observations- Flux

#### Kamioka, Japan Mar 2002 - present

#### Gran Sasso, Italy Dec 2007 - present





## Predicted surface flux variation not yet observed

### Geo-neutrino Observations- Spectrum



### Geo-neutrino Observation Status

|            | Rate  | Spectrum  | Flux     | Variation | Power | Dir |
|------------|-------|-----------|----------|-----------|-------|-----|
| U + Th     | >5o   | Th/U < 17 | Th/U=3.9 |           | model |     |
| K          | K/U   |           | K/U      |           | K/U   |     |
| Crust      | model |           | model    |           | model |     |
| Mantle     | model |           | model    |           | model |     |
| LLSVP/ULVZ |       |           |          |           |       |     |
| Core       |       |           |          |           |       |     |

**Demonstrated/Completed** 

**Assumption and/or Model-dependent result** 

**Opportunity** 

### Theia Geo-nu Opportunities

- Observed signal rate depends on yet-to-be-determined detection efficiency
- Assume for now 80% flat in energy
- At 30 kT fiducial expect ≈ (44 x 30 x 2/3 x 4/5 =) 700 IBD events per year
- Measure *R* different from KamLAND and Borexino ( ≈ 1 year of Theia)
- Resolve spectral components (Th/ U) ( ≈ 10 years of Theia)



### Reactor Antineutrino Signal- I GIS/Operator

- Location, power, load, fuel
- 450 power reactor cores (IAEA)
- Core types by fuel
  - Relatively well known (± few %)



LEU: BWR, PWR, GCR, etc.

**SEU: PHWR** 

LEU+MOX

### Reactor Antineutrino Signal- II Nuclear Physics

- Fissile isotopes- <sup>235</sup>U,
  <sup>238</sup>U, <sup>239</sup>Pu, <sup>241</sup>Pu
- Take weighted average of conversion and summation data
- Calculate energy per fission
- Assume mid-cycle fission fractions
- Relatively well known (± few %)



### Reactor Antineutrino Signal- III Neutrino Physics

Apply IBD cross section

 Apply oscillations explicitly for each core distance

Sum contributions

Estimated precision

of all cores

(±6%)

•

Rate dR/dE (TNU/MeV)



## Theia Reactor-nu Opportunities

Observed signal rate depends on yet-to-be-determined detection efficiency

•

•

- Assume for now 80% flat in energy
- At 30 kT fiducial expect ≈ (33 x 30 x 2/3 x 4/5 =) 500 IBD events per year
  - Observed spectrum depends on yet-to-be-determined energy resolution
- Teal P: Compare  $\Delta m^2_{21}$  reactor and  $\Delta m^2_{21}$  solar in same detector



## Estimated Anti-nu Signal

*R*<sub>total</sub> = 77.2 TNU



1 kT H<sub>2</sub>O contains 0.668559x10<sup>32</sup> free protons

### Conclusion

- Geo- and reactor antineutrino rates in Theia potentially many hundreds per year
- Geo-neutrino rate  $\neq$  KL or BX
- Geo-neutrino Th/U  $\neq$  3.9
- Reactor  $\Delta m^2_{21} \stackrel{?}{=} \operatorname{solar} \Delta m^2_{21}$
- Direction???