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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:

I⇤(H : E) =
X

H,E
P⇤(E ,H) log

✓
P⇤(E ,H)

P⇤(H)P (E)
◆
, (1)

The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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, such that the joint

probability distribution for a particular configuration of
visible and hidden deegrees of freedom is given by a Boltz-
mann weight:

P⇥(V,H) =
1

Z e�Ea,b,✓(V,H), (2)

with Z the normalization. The goal of training of an
ANN is to find parameters ✓

ij

(“weights” or “filters”)
and a

i

, b
i

optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.

The parameters ⇤ = (a
i

, b
j

,�j

i

) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
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}, defined by a Hamilto-
nian energy function H({x
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}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:
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The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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has a formal solution [24]. Since, however, the space of
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bilistic ANNs well adapted to approximating arbitrary
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Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
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sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
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P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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}, defined by a Hamilto-
nian energy function H({x
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}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v
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} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
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, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
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tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.
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has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
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of two layers of nodes, the “visible” layer, correspond-
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we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
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weights �j
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E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
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we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
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P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
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to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
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of the
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v
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} and the remain-
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
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we keep generic at this point), are functions of P (V , E)
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bilistic ANNs well adapted to approximating arbitrary
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
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most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
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we keep generic at this point), are functions of P (V , E)
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In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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visible and hidden deegrees of freedom is given by a Boltz-
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optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.

The parameters ⇤ = (a
i

, b
j

,�j

i

) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:

I⇤(H : E) =
X
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The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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visible and hidden deegrees of freedom is given by a Boltz-
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with Z the normalization. The goal of training of an
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optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN
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}, defined by a Hamilto-
nian energy function H({x
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}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v
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} and the remain-
der of the system by E ⌘ {e
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
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, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:
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The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhie
−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
∑

i

civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})

(12)
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhie
−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
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ij

viwijhj +
∑
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civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})

(12)

Leitmotiv: integrate out some ‘fast’ 
degrees of freedom to obtain 

effective theory of the ‘slow’ ones 
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:

I⇤(H : E) =
X

H,E
P⇤(E ,H) log

✓
P⇤(E ,H)

P⇤(H)P (E)
◆
, (1)

The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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probability distribution for a particular configuration of
visible and hidden deegrees of freedom is given by a Boltz-
mann weight:

P⇥(V,H) =
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Z e�Ea,b,✓(V,H), (2)

with Z the normalization. The goal of training of an
ANN is to find parameters ✓
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(“weights” or “filters”)
and a

i

, b
i

optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.

The parameters ⇤ = (a
i

, b
j

,�j

i

) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
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}, defined by a Hamilto-
nian energy function H({x
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}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v
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} and the remain-
der of the system by E ⌘ {e
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
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, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
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The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:

I⇤(H : E) =
X

H,E
P⇤(E ,H) log
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P⇤(E ,H)

P⇤(H)P (E)
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, (1)

The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
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}, defined by a Hamilto-
nian energy function H({x
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}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
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, measures the to-
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between variables, only). It is given in our setting by:
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tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
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as random variables. Our goal is to extract the relevant
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the degrees of freedom RG captures govern the long dis-
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most information about the system at large, as opposed
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tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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⇤. The gradients are then used to improve the values
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
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} and the remain-
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
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bilistic ANNs well adapted to approximating arbitrary
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
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“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
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has a formal solution [24]. Since, however, the space of
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ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
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Three distinct RBMs are used: two are trained as
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P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
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networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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spatial region of interest by V ⌘ {v
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} and the remain-
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
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to local fluctuations. We thus formally define the ran-
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The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E

a,b,✓

(V,H) =
�P

i

a
i

v
i

� P
j

b
j

h
j

� P
ij

v
i

✓
ij

h
j

, such that the joint

probability distribution for a particular configuration of
visible and hidden deegrees of freedom is given by a Boltz-
mann weight:

P⇥(V,H) =
1

Z e�Ea,b,✓(V,H), (2)

with Z the normalization. The goal of training of an
ANN is to find parameters ✓

ij

(“weights” or “filters”)
and a

i

, b
i

optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.
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poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
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} and the remain-
der of the system by E ⌘ {e
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
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, measures the to-
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contained in the other (thus it is more general than cor-
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The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E
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Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
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}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
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tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V , E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
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ing to local degrees of freedom in our setting, and a
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Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j
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(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j
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of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.
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Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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ables H.
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E . The bu↵er B, is introduced to filter out local correla-
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flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.

The parameters ⇤ = (a
i

, b
j

,�j

i

) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values

Stage I. - Train RBMs to reproduce P(V,E) and P(V) via 
contrastive divergence 

Stage II. - Model Pλ(H | V) as an RBM, obtain Pλ(H,E), 
do Monte-Carlo to evaluate I(H:E)
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III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins: the ANN discovers Kadano↵ blocking (B) N

h

= 4 for
2⇥ 2 area V. (C) N

h

= 1 for a 4⇥ 4 visible area. (D) N
h

= 4
for a 4⇥4 visible area. (E) Comparison of N

h

= 1 weights for
area size of 2⇥2, 4⇥4, 6⇥6 – a boundary coupling behaviour
(discussed in Supplemantary Materials) may be observed.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to

larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [31] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[32] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [31]), whose gradients
behave like electric fields. The continuum limit of the
dimer model is given by the following action:

S
dim

[h] =

Z
d2x (rh(~x))2 ⌘

Z
d2x ~E2(~x), (4)
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhie
−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
∑

i

civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})

(12)
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III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:
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= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.
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value of the weights. (A)N
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= 1 weights for
area size of 2⇥2, 4⇥4, 6⇥6 – a boundary coupling behaviour
(discussed in Supplemantary Materials) may be observed.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to

larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [31] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[32] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [31]), whose gradients
behave like electric fields. The continuum limit of the
dimer model is given by the following action:

S
dim

[h] =

Z
d2x (rh(~x))2 ⌘

Z
d2x ~E2(~x), (4)
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new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
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system in the usual way
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Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
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ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
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that
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ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .
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We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
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bjhj +
∑
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viwijhj +
∑
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civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})
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. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
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pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})
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of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.
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FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins, finding Kadano↵ blocking (B) N

h

= 4 for 2⇥ 2 area V.
(C) N

h

= 1 for a 4 ⇥ 4 visible area. (D) N
h

= 4 for a 4 ⇥ 4
visible area. (E) Comparison of N

h

= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
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We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the

N=1

2

networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:

I⇤(H : E) =
X

H,E
P⇤(E ,H) log

✓
P⇤(E ,H)

P⇤(H)P (E)
◆
, (1)

The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E

a,b,✓

(V,H) =
�P

i

a
i

v
i

� P
j

b
j

h
j

� P
ij

v
i

✓
ij

h
j

, such that the joint

probability distribution for a particular configuration of
visible and hidden deegrees of freedom is given by a Boltz-
mann weight:

P⇥(V,H) =
1

Z e�Ea,b,✓(V,H), (2)

with Z the normalization. The goal of training of an
ANN is to find parameters ✓

ij

(“weights” or “filters”)
and a

i

, b
i

optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.

The parameters ⇤ = (a
i

, b
j

,�j

i

) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins: the ANN discovers Kadano↵ blocking (B) N

h

= 4 for
2⇥ 2 area V. (C) N

h

= 1 for a 4⇥ 4 visible area. (D) N
h

= 4
for a 4⇥4 visible area. (E) Comparison of N

h

= 1 weights for
area size of 2⇥2, 4⇥4, 6⇥6 – a boundary coupling behaviour
(discussed in Supplemantary Materials) may be observed.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to

larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [31] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[32] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [31]), whose gradients
behave like electric fields. The continuum limit of the
dimer model is given by the following action:

S
dim

[h] =

Z
d2x (rh(~x))2 ⌘

Z
d2x ~E2(~x), (4)
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhie
−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
∑

i

civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})

(12)

Migdal-Kadanoff block-spins:
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of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:
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with s
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= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.
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FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
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visible area. (E) Comparison of N
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= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E
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and E
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electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N
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and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).
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We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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ber of both hidden neurons N
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and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).
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and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
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y
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which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the

N=1

2

networks (ANNs). Finally, we provide a verification of
our claims by considering two paradigmatic models of
statistical physics: the Ising model – for which the RG
procedure yields the famous Kadano↵ block spins – and
the dimer model, whose RG is much less trivial.

Consider then a classical system of local degrees of free-
dom X = {x1, . . . , xN

} ⌘ {x
i

}, defined by a Hamilto-
nian energy function H({x

i

}) and associated statistical
probabilities P (X ) / e��H({xi}), where � is the inverse
temperature. Alternatively (and su�ciently for our pur-
poses), the system is given by Monte Carlo samples of
the equilibrium distribution P (X ). We denote a small
spatial region of interest by V ⌘ {v

i

} and the remain-
der of the system by E ⌘ {e

i

}, so that X = (V, E). We
adopt a probabilistic point of view, and treat X , E etc.
as random variables. Our goal is to extract the relevant
degrees of freedom H from V.

“Relevance” is understood here in the following way:
the degrees of freedom RG captures govern the long dis-
tance behaviour of the theory, and therefore the experi-
mentally measurable physical properties; they carry the
most information about the system at large, as opposed
to local fluctuations. We thus formally define the ran-
dom variable H as a composite function of degrees of
freedom in V maximizing the mutual information (MI)
[23] between H and the environment E .

Mutual information, denoted by I
�

, measures the to-

tal amount of information about one random variable
contained in the other (thus it is more general than cor-
relation coe�cients, which measure monotonic relations
between variables, only). It is given in our setting by:

I⇤(H : E) =
X

H,E
P⇤(E ,H) log

✓
P⇤(E ,H)

P⇤(H)P (E)
◆
, (1)

The unknown distribution P⇤(E ,H) and its marginaliza-
tion P⇤(H), depending on a set of parameters ⇤ (which
we keep generic at this point), are functions of P (V, E)
and of P⇤(H|V), which is the central object of interest.
In the supplementary materials we discuss the relation of
this approach to RG to the more standard procedures.

Finding P⇤(H|V) which maximizes I⇤ under certain
constraints is a well-posed mathematical question and
has a formal solution [24]. Since, however, the space of
probability distributions grows exponentially with num-
ber of local degrees of freedom, it is in practice impos-
sible to use without further assumptions for any but
the smallest physical systems. Our approach is to ex-
ploit the remarkable dimensionality reduction properties
of artificial neural networks (ANNs) [9]. We use re-
stricted Boltzmann machines (RBM), a class of proba-
bilistic ANNs well adapted to approximating arbitrary
data probability distributions. An RBM is composed
of two layers of nodes, the “visible” layer, correspond-
ing to local degrees of freedom in our setting, and a
“hidden” layer. The interactions between the layers are
defined by an energy function E⇥ ⌘ E

a,b,✓

(V,H) =
�P

i

a
i

v
i

� P
j

b
j

h
j

� P
ij

v
i

✓
ij

h
j

, such that the joint

probability distribution for a particular configuration of
visible and hidden deegrees of freedom is given by a Boltz-
mann weight:

P⇥(V,H) =
1

Z e�Ea,b,✓(V,H), (2)

with Z the normalization. The goal of training of an
ANN is to find parameters ✓

ij

(“weights” or “filters”)
and a

i

, b
i

optimizing a chosen objective function.
Three distinct RBMs are used: two are trained as

e�cient approximators of the probability distributions
P (V, E) and P (V), using the celebrated contrastive di-
vergence (CD) algorithm [25]. Their trained parameters
are used by the third network [see Fig. 1(B)], which has
a di↵erent objective: to find P⇤(H|V) maximizing I⇤,
we introduce the real space mutual information (RSMI)
network, whose architecture is shown in Fig. 1(A). The
hidden units of RSMI correspond to coarse-grained vari-
ables H.

FIG. 1. (A) The RSMI neural network architecture: the hid-
den layer H is directly coupled to the visible layer V via the
weights �j

i

(red arrows), however the training algorithm for
the weights estimates MI between H and the environment
E . The bu↵er B, is introduced to filter out local correla-
tions within V (see supplementary materials). (B) The work-
flow of the algorithm: the CD-algorithm trained RBMs learn
to approximate probabilty distributions P (V, E) and P (V).
Their final parameters, denoted collectively by ⇥(V,E) and
⇥(V), are inputs for the main RSMI network learning to ex-
tract P⇤(H|V) by maximizing I⇤. The final weights �j

i

of the
RSMI network identify the relevant degrees of freedom. For
Ising and dimer problems they are shown in Figs. 2 and 4.

The parameters ⇤ = (a
i

, b
j

,�j

i

) of the RSMI network
are trained by an iterative procedure. At each iteration a
Monte Carlo estimate of function I⇤(H : E) and its gra-
dients is performed for the current values of parameters
⇤. The gradients are then used to improve the values
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III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
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X
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s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N
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= 1 hidden neuron, V area of 2⇥2
spins: the ANN discovers Kadano↵ blocking (B) N

h

= 4 for
2⇥ 2 area V. (C) N
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= 1 for a 4⇥ 4 visible area. (D) N
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= 4
for a 4⇥4 visible area. (E) Comparison of N
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= 1 weights for
area size of 2⇥2, 4⇥4, 6⇥6 – a boundary coupling behaviour
(discussed in Supplemantary Materials) may be observed.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to

larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E
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and E
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electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [31] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[32] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [31]), whose gradients
behave like electric fields. The continuum limit of the
dimer model is given by the following action:

S
dim

[h] =

Z
d2x (rh(~x))2 ⌘

Z
d2x ~E2(~x), (4)
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of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins, finding Kadano↵ blocking (B) N

h

= 4 for 2⇥ 2 area V.
(C) N

h

= 1 for a 4 ⇥ 4 visible area. (D) N
h

= 4 for a 4 ⇥ 4
visible area. (E) Comparison of N

h

= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

(B)

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the



16

Test case 2: the dimer model

▪ Defined by local constraints 
▪ Partition function counts 

configurations

4

dimer model is given by the following action:

S
dim

[h] =

Z
d2x (rh(~x))2 ⌘

Z
d2x ~E2(~x), (4)

and therefore the coarse-grained degrees of freedom are
low-momentum (Fourier) components of the electrical
fields E

x

, E
y

in the x and y directions. They correspond
to “staggered” dimer configurations shown in Fig. 3(A).

FIG. 4. The weights of the RSMI network trained on dimer
model data: (A) N

h

= 2 hidden neurons for a visible area
V of 8 ⇥ 8 spins. The two filters recognize E

y

and E
x

+ E
y

electrical fields, respectively. (B) The same data for N
h

= 4
hiddens. Compare with dimer patterns in Fig. 3(A).

Remarkably, the RSMI algorithm extracts the local
electric fields from the dimer model samples without any
knowledge of those mappings. In Fig. 4 the weights for
N

h

= 2 and N
h

= 4 hidden neurons, for an 8 ⇥ 8 area
[similar to Fig. 3(A)] are shown: the pattern of large neg-
ative (blue) weights couples strongly to a dimer pattern
corresponding to local uniform E

y

field [see left pannels
of Figs. 3(A,B)]. The large positive (yellow) weights se-
lect an identical pattern, translated by one link. The
remaining neurons extract linear superpositions E

x

+E
y

or E
x

� E
y

of the fields.
To demonstrate the robustness of the RSMI, we added

physically irrelevant noise, forming nevertheless a pro-
nounced pattern, which we model by additional spin de-
grees of freedom, strongly coupled (ferromagnetically) in
pairs [wiggly lines in Fig. 3(A)]. Decoupled from the
dimers, and from other pairs, they form a trivial system,
whose fluctuations are short-range noise on top of the
dimer model. Vanishing weights [green in Figs. 4(A,B)]
on sites where pairs of spins reside prove RSMI discards
their fluctuations as irrelevant for long-range physics, de-
spite their regular pattern.

IV. OUTLOOK

Artificial neural networks based on real-space mutual
information optimization have proven capable of extract-
ing complex information about physically relevant de-
grees of freedom. This approach is an example of a new
paradigm in applying ML in physics: the internal data
representations discovered by suitably designed ML sys-
tems are not just technical means to an end, but instead
are a clear reflection of the objective structure of physical
reality (see also [28]). In spite of its “black box” reputa-
tion, the innards of ML architecture may teach us fun-
demental lessons. This raises the prospect of employing
machine learning in science in a collaborative fashion, ex-
ploiting the machines’ power to distill subtle information
from vast data, and human creativity and background
knowledge [29].

Numerous further research directions can be pursued.
Most directly, equilibrium systems with less understood
relevant degrees of freedom – e.g. disordered and glassy
systems – can be investigated. Furthermore, though we
applied our algorithm to classical systems, the exten-
sion to quantum domain is possible via the quantum-to-
classical mapping of Euclidean path integral formalism.
We envisage extending RSMI to a full RG scheme, i.e. us-
ing additional ANNs to extract the e↵ective Hamiltonian
of the coarse-grained degrees of freedom and possibly re-
construct the RG flow. To this end a formal analysis of
the mutual-information based RG procedure may prove
fruitful, also from theory perspective. Finally, applica-
tions of RSMI beyond physics are possible, since it o↵ers
an ANN implementation of a variant of Information Bot-
tleneck method [24], succesful in compression and clus-
tering analyses [30].
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of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins, finding Kadano↵ blocking (B) N

h

= 4 for 2⇥ 2 area V.
(C) N

h

= 1 for a 4 ⇥ 4 visible area. (D) N
h

= 4 for a 4 ⇥ 4
visible area. (E) Comparison of N

h

= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

(B)

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins, finding Kadano↵ blocking (B) N

h

= 4 for 2⇥ 2 area V.
(C) N

h

= 1 for a 4 ⇥ 4 visible area. (D) N
h

= 4 for a 4 ⇥ 4
visible area. (E) Comparison of N

h

= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins, finding Kadano↵ blocking (B) N

h

= 4 for 2⇥ 2 area V.
(C) N

h

= 1 for a 4 ⇥ 4 visible area. (D) N
h

= 4 for a 4 ⇥ 4
visible area. (E) Comparison of N

h

= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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“Optimality” of mutual information

with the cumulants calculated using P⇤,0(X|X 0), that is

C1 = hK1i⇤,0 , (16)

C2 =
⌦
K2

1

↵
⇤,0

� hK1i2⇤,0 , (17)

C3 =
⌦
K3

1

↵
⇤,0

� 3
⌦
K2

1

↵
⇤,0

hK1i⇤,0 + 2 hK1i3⇤,0 (18)

and so on. The decomposition in equation (8) is particularly useful, because
it causes the above averages to factorize into averages of combinations of spins
from single blocks, which simplifies the calculation of the cumulants significantly.
Additionally, the powers of K1 inside the averages induce couplings between
multiple blocks and naturally lead to the corresponding couplings in terms of the
new variables. The cumulant expansion in equation (15) allows us to determine
the new Hamiltonian via

K0[X 0] = log(Z⇤,0[X 0]) +
1X

k=0

1

k!
C

k

[X 0]. (19)

In general, new coupling terms are generated by the RG transformation.

4 1D Ising Model With Nearest Neighbour In-

teractions

We consider the one-dimensional Ising model with nearest neighbour interac-
tions and no magnetic field, given by the Hamiltonian

H[X ] = �J
NX

i=1

x
i

x
i+1, (20)

where N is the number of spins and J the coupling, and periodic boundary
conditions. The spin variables are collected in X = {x

i

}N
i=1 with x

i

= ±1. This
has some consequences for the cumulant expansion: First of all K0 involves
all spins X ; second, the inter-block part, K1, depends only on the left- and
rightmost spins of each block and involves only neighbouring blocks V

j

, V
j+1

in each term. Additionally, the Z2 symmetry x
i

! �x
i

of the Hamiltonian,
H[�X ] = H[X ], requires the RG rule to satisfy

P⇤(H|V) = P⇤(�H|� V). (21)

Introduce the partitions

X =

n[̇

j=1

{x(j�1)LV+1, . . . , xjLV}, X 0 =
n[̇

j=1

H
j

, (22)

4

▪ Effective Hamiltonian from cumulant expansion
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from single blocks, which simplifies the calculation of the cumulants significantly.
Additionally, the powers of K1 inside the averages induce couplings between
multiple blocks and naturally lead to the corresponding couplings in terms of the
new variables. The cumulant expansion in equation (15) allows us to determine
the new Hamiltonian via

K0[X 0] = log(Z⇤,0[X 0]) +
1X
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In general, new coupling terms are generated by the RG transformation.

4 1D Ising Model With Nearest Neighbour In-

teractions

We consider the one-dimensional Ising model with nearest neighbour interac-
tions and no magnetic field, given by the Hamiltonian

H[X ] = �J
NX

i=1

x
i

x
i+1, (20)

where N is the number of spins and J the coupling, and periodic boundary
conditions. The spin variables are collected in X = {x

i

}N
i=1 with x

i

= ±1. This
has some consequences for the cumulant expansion: First of all K0 involves
all spins X ; second, the inter-block part, K1, depends only on the left- and
rightmost spins of each block and involves only neighbouring blocks V
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, V
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in each term. Additionally, the Z2 symmetry x
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of the Hamiltonian,
H[�X ] = H[X ], requires the RG rule to satisfy
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4

▪ Effective Hamiltonian from cumulant expansion

▪ The “rangeness” and “n-body-ness”
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hK1i⇤,0 + 2 hK1i3⇤,0 (18)

and so on. The decomposition in equation (8) is particularly useful, because
it causes the above averages to factorize into averages of combinations of spins
from single blocks, which simplifies the calculation of the cumulants significantly.
Additionally, the powers of K1 inside the averages induce couplings between
multiple blocks and naturally lead to the corresponding couplings in terms of the
new variables. The cumulant expansion in equation (15) allows us to determine
the new Hamiltonian via

K0[X 0] = log(Z⇤,0[X 0]) +
1X

k=0

1

k!
C

k

[X 0]. (19)

In general, new coupling terms are generated by the RG transformation.

4 1D Ising Model With Nearest Neighbour In-

teractions

We consider the one-dimensional Ising model with nearest neighbour interac-
tions and no magnetic field, given by the Hamiltonian

H[X ] = �J
NX

i=1

x
i

x
i+1, (20)

where N is the number of spins and J the coupling, and periodic boundary
conditions. The spin variables are collected in X = {x

i

}N
i=1 with x

i

= ±1. This
has some consequences for the cumulant expansion: First of all K0 involves
all spins X ; second, the inter-block part, K1, depends only on the left- and
rightmost spins of each block and involves only neighbouring blocks V

j

, V
j+1

in each term. Additionally, the Z2 symmetry x
i

! �x
i

of the Hamiltonian,
H[�X ] = H[X ], requires the RG rule to satisfy

P⇤(H|V) = P⇤(�H|� V). (21)

Introduce the partitions

X =

n[̇

j=1

{x(j�1)LV+1, . . . , xjLV}, X 0 =
n[̇

j=1

H
j

, (22)

4

▪ Effective Hamiltonian from cumulant expansion

▪ The “rangeness” and “n-body-ness”



18

“Optimality” of mutual information

-10 -5 0 5 10
-10

-5

0

5

10

λ1

λ 2

104IΛ(ℋ:ℰ) for K = 0.1, Lℬ = 1

0.1

0.2

0.3

0.4

-10 -5 0 5 10
-10

-5

0

5

10

λ1

λ 2

|K2(2)/K2(1)| for K = 0.1

0

0.01

0.02

0.03

-10 -5 0 5 10
-10

-5

0

5

10

λ1

λ 2

104IΛ(ℋ:ℰ) for K = 0.1, Lℬ = 1

0.1

0.2

0.3

0.4

-10 -5 0 5 10
-10

-5

0

5

10

λ1

λ 2

|K4(1,1,1)/K2(1)| for K = 0.1

0

0.00001

0.00002

0.00003

with the cumulants calculated using P⇤,0(X|X 0), that is

C1 = hK1i⇤,0 , (16)

C2 =
⌦
K2

1

↵
⇤,0

� hK1i2⇤,0 , (17)

C3 =
⌦
K3

1

↵
⇤,0

� 3
⌦
K2

1

↵
⇤,0

hK1i⇤,0 + 2 hK1i3⇤,0 (18)

and so on. The decomposition in equation (8) is particularly useful, because
it causes the above averages to factorize into averages of combinations of spins
from single blocks, which simplifies the calculation of the cumulants significantly.
Additionally, the powers of K1 inside the averages induce couplings between
multiple blocks and naturally lead to the corresponding couplings in terms of the
new variables. The cumulant expansion in equation (15) allows us to determine
the new Hamiltonian via

K0[X 0] = log(Z⇤,0[X 0]) +
1X

k=0

1

k!
C

k

[X 0]. (19)

In general, new coupling terms are generated by the RG transformation.

4 1D Ising Model With Nearest Neighbour In-

teractions

We consider the one-dimensional Ising model with nearest neighbour interac-
tions and no magnetic field, given by the Hamiltonian

H[X ] = �J
NX

i=1

x
i

x
i+1, (20)

where N is the number of spins and J the coupling, and periodic boundary
conditions. The spin variables are collected in X = {x

i

}N
i=1 with x

i

= ±1. This
has some consequences for the cumulant expansion: First of all K0 involves
all spins X ; second, the inter-block part, K1, depends only on the left- and
rightmost spins of each block and involves only neighbouring blocks V

j

, V
j+1

in each term. Additionally, the Z2 symmetry x
i

! �x
i

of the Hamiltonian,
H[�X ] = H[X ], requires the RG rule to satisfy

P⇤(H|V) = P⇤(�H|� V). (21)

Introduce the partitions

X =

n[̇

j=1

{x(j�1)LV+1, . . . , xjLV}, X 0 =
n[̇

j=1

H
j

, (22)

4

▪ Effective Hamiltonian from cumulant expansion

▪ The “rangeness” and “n-body-ness”



19



19

0.1 0.2 0.3 0.4 0.5

-0.02

-0.01

0.00

0.01

0.02

0.03

Mutual Information 104IΛ(ℋ:ℰ)

C
ou
pl
in
g
S
tre
ng
th
R
at
io
K
2(
2)
/K
2(
1)

(λ1,λ2) = λ(cos(θ),sin(θ)), K = 0.1, Lℬ = 1

λ = 1
2

λ = 1
λ = 2
λ = 3
λ = 1000



19

0.1 0.2 0.3 0.4 0.5

-0.02

-0.01

0.00

0.01

0.02

0.03

Mutual Information 104IΛ(ℋ:ℰ)

C
ou
pl
in
g
S
tre
ng
th
R
at
io
K
2(
2)
/K
2(
1)

(λ1,λ2) = λ(cos(θ),sin(θ)), K = 0.1, Lℬ = 1

λ = 1
2

λ = 1
λ = 2
λ = 3
λ = 1000

0.1 0.2 0.3 0.4 0.5

-0.00002

-0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

Mutual Information 104IΛ(ℋ:ℰ)

K
4(
1,
1,
1)
/K
2(
1)

(λ1,λ2) = λ(cos(θ),sin(θ)), K = 0.1, Lℬ = 1

λ = 1
2

λ = 1
λ = 2
λ = 3
λ = 1000



Effective hamiltonian
3

FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhie
−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
∑

i

civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})

(12)
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3 Cumulant Expansion

In order to be able to analytically perform the general RG transformation, we
use an appropriate cumulant expansion. For that we split the Hamiltonian into
intra-block terms, i.e. those that couple just spins inside one block, collected
in K0, and inter-block terms, i.e. those that couple spins from di↵erent blocks,
collected in K1:

K[X ] = K0[X ] +K1[X ]. (8)

Due to translation invariance of both the original system and the RG rule (equiv-
alent blocks), the intra-block terms are all of the same form, such that we can
write

K0[X ] =
nX

j=1

Kb[Vj

], (9)

which implies

Z0 =
X

X
eK0[X ] =

nY

j=1

Zb, Zb =
X

V
eKb[V]. (10)

Using this decomposition of the Hamiltonian, equation (3) can be rewritten as

eK
0[X 0] =

X

X
eK1[X ]

nY

j=1

eKb[Vj ]P⇤(Hj

|V
j

)
| {z }

=:Z⇤,b[Hj ]P⇤,b(Vj |Hj)

(11)

=
nY

j=1

Z⇤,b[Hj

]

| {z }
=Z⇤,0[X 0]

X

X
eK1(X )

nY

j=1

P⇤,b(Vj

|H
j

)

| {z }
=P⇤,0(X|X 0)

(12)

= Z⇤,0[X 0]
D
eK1(X )

E

⇤,0
[X 0], (13)

where the average is over the conditional probability distribution P⇤,0(X|X 0)
and thus introduces a dependence on the new spin variables, X 0. The fact that
the conditional probability distribution factorizes results in the factorization of
hO[X ]i⇤,0 for any operator of the form O[X ] =

Q
n

j=1 o[Vj

]:

hO[X ]i⇤,0 [X 0] =
nY

j=1

X

Vj

o[V
j

]P⇤,b(Vj

|H
j

)

| {z }
=:ho[V]i⇤,b[Hj ]

=
nY

j=1

ho[V]i⇤,b [Hj

] (14)

The form (13) lends itself to a cumulant expansion

D
eK1[X ]

E

⇤,0
[X 0] = e

P1
k=0

1
k!Ck[X 0] (15)

3

3

FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.
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will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
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spins can be written as
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This joint distribution also defines a variational distribu-
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.
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Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
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procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.
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between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
∑

i

civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhjpλ({vi}, {hj})

(12)

3 Cumulant Expansion

In order to be able to analytically perform the general RG transformation, we
use an appropriate cumulant expansion. For that we split the Hamiltonian into
intra-block terms, i.e. those that couple just spins inside one block, collected
in K0, and inter-block terms, i.e. those that couple spins from di↵erent blocks,
collected in K1:

K[X ] = K0[X ] +K1[X ]. (8)

Due to translation invariance of both the original system and the RG rule (equiv-
alent blocks), the intra-block terms are all of the same form, such that we can
write

K0[X ] =
nX

j=1

Kb[Vj

], (9)

which implies

Z0 =
X

X
eK0[X ] =

nY

j=1

Zb, Zb =
X

V
eKb[V]. (10)

Using this decomposition of the Hamiltonian, equation (3) can be rewritten as

eK
0[X 0] =

X

X
eK1[X ]
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|V
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P⇤,b(Vj

|H
j

)

| {z }
=P⇤,0(X|X 0)

(12)

= Z⇤,0[X 0]
D
eK1(X )

E

⇤,0
[X 0], (13)

where the average is over the conditional probability distribution P⇤,0(X|X 0)
and thus introduces a dependence on the new spin variables, X 0. The fact that
the conditional probability distribution factorizes results in the factorization of
hO[X ]i⇤,0 for any operator of the form O[X ] =

Q
n

j=1 o[Vj

]:

hO[X ]i⇤,0 [X 0] =
nY

j=1

X

Vj

o[V
j

]P⇤,b(Vj

|H
j

)

| {z }
=:ho[V]i⇤,b[Hj ]

=
nY

j=1

ho[V]i⇤,b [Hj

] (14)

The form (13) lends itself to a cumulant expansion
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
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We can also define a free energy for the coarse grained
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. (7)
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that H and V should be strongly dependent on each other; in contrast, if they
are independent,
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X

X
eK[X ]

| {z }
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P⇤(Hj

) = Z

nY

j=1

P⇤(Hj

) (4)

and the partition function clearly enters only in the energy constant log(Z). A
second important aspect is the range of the renormalized Hamiltonian, which
can be seen as a measure of whether the RG procedure produces a simpler
Hamiltonian or a more complicated one; the number of new terms appearing
should be minimized.

2 Cumulant Expansion

In order to be able to analytically perform the general RG transformation, at
least approximately, we use an appropriate cumulant expansion. For that we
split the Hamiltonian into intra-block terms, i.e. those that couple just spins
inside one block, collected in K0, and inter-block terms, i.e. those that couple
spins from di↵erent blocks, collected in K1 [6]:

K[X ] = K0[X ] +K1[X ]. (5)

Due to translation invariance of both the original system and the RG rule (equiv-
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.
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Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
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and the partition function clearly enters only in the energy constant log(Z). A
second important aspect is the range of the renormalized Hamiltonian, which
can be seen as a measure of whether the RG procedure produces a simpler
Hamiltonian or a more complicated one; the number of new terms appearing
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with the cumulants calculated using P⇤,0(X|X 0), that is
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and so on. The decomposition in equation (8) is particularly useful, because
it causes the above averages to factorize into averages of combinations of spins
from single blocks, which simplifies the calculation of the cumulants significantly.
Additionally, the powers of K1 inside the averages induce couplings between
multiple blocks and naturally lead to the corresponding couplings in terms of the
new variables. The cumulant expansion in equation (15) allows us to determine
the new Hamiltonian via

K0[X 0] = log(Z⇤,0[X 0]) +
1X
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k!
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k

[X 0]. (19)

In general, new coupling terms are generated by the RG transformation.

4 1D Ising Model With Nearest Neighbour In-

teractions

We consider the one-dimensional Ising model with nearest neighbour interac-
tions and no magnetic field, given by the Hamiltonian

H[X ] = �J
NX

i=1

x
i

x
i+1, (20)

where N is the number of spins and J the coupling, and periodic boundary
conditions. The spin variables are collected in X = {x

i

}N
i=1 with x

i

= ±1. This
has some consequences for the cumulant expansion: First of all K0 involves
all spins X ; second, the inter-block part, K1, depends only on the left- and
rightmost spins of each block and involves only neighbouring blocks V

j

, V
j+1

in each term. Additionally, the Z2 symmetry x
i

! �x
i

of the Hamiltonian,
H[�X ] = H[X ], requires the RG rule to satisfy

P⇤(H|V) = P⇤(�H|� V). (21)

Introduce the partitions

X =

n[̇

j=1

{x(j�1)LV+1, . . . , xjLV}, X 0 =
n[̇
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H
j

, (22)
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhie
−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhje
Tλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhje
Tλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
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civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
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Z
. (11)

This joint distribution also defines a variational distribu-
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and the partition function clearly enters only in the energy constant log(Z). A
second important aspect is the range of the renormalized Hamiltonian, which
can be seen as a measure of whether the RG procedure produces a simpler
Hamiltonian or a more complicated one; the number of new terms appearing
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where the average is over the conditional probability distribution P⇤,0(X|X 0)
and thus introduces a dependence on the new spin variables, X 0. The fact that
the conditional probability distribution factorizes results in the factorization of
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The form (11) lends itself to a cumulant expansion
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with the cumulants calculated using P⇤,0(X|X 0), that is

C1 = hK1i⇤,0 , (15)
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and so on. The decomposition in equation (5) is particularly useful, because
it causes the above averages to factorize into averages of combinations of spins
from single blocks, which simplifies the calculation of the cumulants significantly.
Additionally, the powers of K1 inside the averages induce couplings between
multiple blocks and naturally lead to the corresponding couplings in terms of the
new variables. The cumulant expansion in equation (14) allows us to determine
the new Hamiltonian via

K0[X 0] = log(Z0) + log(P⇤,0(X 0)) +
1X

k=0

1

k!
C

k

[X 0]. (18)

In general, new coupling terms are generated by the RG transformation.

3 Mutual Information

Recently, Koch-Janusz and Ringel proposed the maximization of the real space
mutual information [1] as a criterion of usefulness [3]. They proposed to consider
a single block at a time and divide the system into four regions X = V[B[E[O,
the visibles V, the bu↵er B, the environment E and the outer region O, and then
measure the mutual information I⇤(H : E) between the new degrees of freedom
H and the environment E of the original ones, while excluding the bu↵er B to
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= ±1. This
has some consequences for the cumulant expansion: First of all K0 involves
all spins X ; second, the inter-block part, K1, depends only on the left- and
rightmost spins of each block and involves only neighbouring blocks V

j

, V
j+1

in each term. Additionally, the Z2 symmetry x
i

! �x
i

of the Hamiltonian,
H[�X ] = H[X ], requires the RG rule to satisfy

P⇤(H|V) = P⇤(�H|� V). (21)

Introduce the partitions

X =

n[̇

j=1

{x(j�1)LV+1, . . . , xjLV}, X 0 =
n[̇

j=1

H
j

, (22)

4
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KL-training failure

3

of weights in the next step, using a stochastic gradient
descent procedure.

III. RESULTS

To validate our approach we consider two important
classical models of statistical physics: the (critical) Ising
model, whose RG is simpler, since the coarse-grained de-
grees of freedom resemble the original ones, and the fully-
packed dimer model, where they are entirely di↵erent.

The Ising Hamiltonian on a two-dimensional square
lattice is:

H
I

=
X

<i,j>

s
i

s
j

, (3)

with s
i

= ±1 and the summation over nearest neigh-
bours. Real-space RG of the Ising model proceeds by the
block-spin construction [16], whereby each 2⇥ 2 block of
spins is coarse grained into a single e↵ective spin, whose
orientation is decided by a “majority rule”.

FIG. 2. The weights of the RSMI network trained on Ising
model. The ANN couples strongly to areas with large absolute
value of the weights. (A)N

h

= 1 hidden neuron, V area of 2⇥2
spins, finding Kadano↵ blocking (B) N

h

= 4 for 2⇥ 2 area V.
(C) N

h

= 1 for a 4 ⇥ 4 visible area. (D) N
h

= 4 for a 4 ⇥ 4
visible area. (E) Comparison of N

h

= 1 weights for area size
of 2⇥ 2, 4⇥ 4, 6⇥ 6 – the network couples to the boundary.

The results of the RSMI algorithm trained on Ising
model samples are shown in Fig. 2. We vary the num-
ber of both hidden neurons N

h

and the visible units,
which are arranged in a 2D area V of size L⇥L [see Fig.
1(A)]. For a 4 spin area the network indeed rediscovers
the famous Kadano↵ block-spin: Fig. 2(A) shows a sin-
gle hidden unit coupling uniformly to 4 visible spins, i.e.
the orientation of the hidden unit is decided by the aver-
age magnetisation in the area. Fig. 2(B) is a trivial but
important sanity check: given 4 hidden units to extract
relevant degrees of freedom from an area of 4 spins, the
networks couples each hidden unit to a di↵erent spin, as
expected.

We also compare the weights for areas V of di↵erent
size, which are generalizations of Kadano↵ procedure to
larger blocks. We find the network couples to the bound-
aries of the area V to maximize MI with the rest of the
system [see Figs. 2(C,D,E)]. This physical insight the
RSMI provides can in fact be shown to hold exactly for
a standard real-space RG that in the limit of number of
coarse grained variables equaling the size of the boundary
(see supplementary materials).

(B)

FIG. 3. (A) Two sample dimer configurations (blue links),
corresponding to E

y

and E
x

electrical fields, respectively. The
coupled pairs of additional spin degrees of freedom on vartices
and faces of the lattice (wiggly lines) are decoupled from the
dimers and from each other. Their fluctuations constitute
irrelevant noise. (B) An example of mapping the dimer model
to local electric fields. The so-called staggered configuration
on the left maps to uniform nonvanishing field in the vertical
direction: hE

y

i 6= 0. The “columnar” configuration on the
right produces both E

x

and E
y

which are zero on average
(see Ref. [26] for details of the mapping).

We next study the dimer model, given by an entropy-
only partition function, which counts the number of
dimer coverings of the lattice, i.e. subsets of edges such
that every vertex is the endpoint of exactly one edge. Fig.
3(A) shows sample dimer configurations (and additional
spin degrees of freedom added to generate noise). This
deceptively simple description hides nontrivial physics
[27] and correspondingly, the RG procedure for the dimer
model is more subtle, since – contrary to the Ising case –
the correct degrees of freedom to perform RG on are not
dimers, but rather look like e↵ective local electric fields.
This is revealed by a mathematical mapping to a “height
field” h (see Figs.3(A,B) and Ref. [26]), whose gradients
behave like electric fields. The continuum limit of the
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