ETH zürich

Machine Learning and the Real-Space Renormalization Group

Maciej Koch-Janusz

Zohar Ringel

"Mutual Information, Neural Networks and the Renormalization Group" MKJ and Zohar Ringel, *Nature Physics* 14, 578-582 (2018)

ETH zürich

Patrick Lenggenhager

Outline

Outline

- Machine learning in condensed matter
- RBMs 101
- Information-theoretic approach to real-space RG
 - The Real Space Mutual Information algorithm
 - Results
 - "Optimality" of Mutual Information

The punchline

An information theoretic approach and an *unsupervised* machine learning algorithm performing real-space RG of classical statistical physical systems: degrees of freedom relevant for large length scales, RG flow, critical exponents.

EHzürich

Lei Wang, Phys. Rev. B **94**, 195105 (2016)

J. Carrasquilla and R. Melko *Nature Physics* **13**, *431–434 (2017)*

E.P. van Nieuwenburg, Y. Liu, S. Huber *Nature Physics* **13**, *435–439 (2017)*

State compression and representation

State compression and representation

State compression and representation

State compression and representation

State compression and representation

State compression and representation

State compression and representation

State compression and representation

Experimental / numerical protocols

M. Stoudenmire, D. Schwab, Advances in Neural Information Processing Systems 29, 4799 (2016)

Machine Learning

Condensed Matter

data-driven

- Stochastic networks
- Model probability distributions

- Stochastic networks
- Model probability distributions

$$E_{\Theta} \equiv E_{a,b,\theta}(\mathcal{V},\mathcal{H}) = -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{ij} v_{i}\theta_{ij}h_{j}$$

- Stochastic networks
- Model probability distributions

$$E_{\Theta} \equiv E_{a,b,\theta}(\mathcal{V},\mathcal{H}) = -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{ij} v_{i}\theta_{ij}h_{j}$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

- Stochastic networks
- Model probability distributions

$$E_{\Theta} \equiv E_{a,b,\theta}(\mathcal{V},\mathcal{H}) = -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{ij} v_{i}\theta_{ij}h_{j}$$

$$P_{\Theta}(\mathcal{V}, \mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V}, \mathcal{H})}$$

$$P_{\Theta}(\mathcal{V}) \qquad P_{\Theta}(\mathcal{H}|\mathcal{V})$$

- Stochastic networks
- Model probability distributions
- Can be used for efficient sampling

$$E_{\Theta} \equiv E_{a,b,\theta}(\mathcal{V},\mathcal{H}) = -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{ij} v_{i}\theta_{ij}h_{j}$$

$$P_{\Theta}(\mathcal{V}, \mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V}, \mathcal{H})}$$

$$P_{\Theta}(\mathcal{V}) \qquad P_{\Theta}(\mathcal{H}|\mathcal{V})$$

- Stochastic networks
- Model probability distributions
- Can be used for efficient sampling

$$E_{\Theta} \equiv E_{a,b,\theta}(\mathcal{V},\mathcal{H}) = -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{ij} v_{i}\theta_{ij}h_{j}$$

$$\begin{split} P_{\Theta}(\mathcal{V},\mathcal{H}) &= \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})} \\ P_{\Theta}(\mathcal{V}) & P_{\Theta}(\mathcal{H}|\mathcal{V}) \end{split}$$

• How to chose the parameters?

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\mathcal{V} \in \text{data}} \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{\text{data}}(\mathcal{V}) \log P_{\Theta}(\mathcal{V})$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)
$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$KL(P_{data}||P_{\Theta}) - KL(P_n||P_{\Theta})$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$KL(P_{data}||P_{\Theta}) - KL(P_n||P_{\Theta})$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$KL(P_{data}||P_{\Theta}) - KL(P_n||P_{\Theta})$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$KL(P_{data}||P_{\Theta}) - KL(P_n||P_{\Theta})$$

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

First attempt: Maximal Likelihood (ML)

$$\sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{data}(\mathcal{V}) - \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log P_{\Theta}(\mathcal{V}) = \sum_{\text{all } \mathcal{V}} P_{data}(\mathcal{V}) \log \left(\frac{P_{data}(\mathcal{V})}{P_{\Theta}(\mathcal{V})}\right)$$

$$KL(P_{data}||P_{\Theta}) - KL(P_n||P_{\Theta})$$

 Conceptually important: formalizes the notion of separation of scales

- Conceptually important: formalizes the notion of separation of scales
- Universality

- Conceptually important: formalizes the notion of separation of scales
- Universality
- Many flavors exist: Wilsonian, DMRG, real-space,

- Conceptually important: formalizes the notion of separation of scales
- Universality
- Many flavors exist: Wilsonian, DMRG, real-space,

- Conceptually important: formalizes the notion of separation of scales
- Universality
- Many flavors exist: Wilsonian, DMRG, real-space,

Leitmotiv: integrate out some 'fast' degrees of freedom to obtain effective theory of the 'slow' ones

In a sense the relation of RG to information theory is obvious as averaging loses information

In a sense the relation of RG to information theory is obvious as averaging loses information

- Can it be formalized?
- Is it useful?

Real-space RG from Information Theory perspective

ETH zürich

Real-space RG from Information Theory perspective

$$e^{\mathcal{K}'(\mathcal{X}')} = \sum_{\mathcal{X}} e^{\mathcal{K}(\mathcal{X})} P_{\Lambda}(\mathcal{X}'|\mathcal{X})$$

Real-space RG from Information Theory perspective

$$e^{\mathcal{K}'(\mathcal{X}')} = \sum_{\mathcal{X}} e^{\mathcal{K}(\mathcal{X})} P_{\Lambda}(\mathcal{X}'|\mathcal{X})$$

Task: Learn $P_{\Lambda}(\mathcal{H} | \mathcal{V})$ such that \mathcal{H} tracks the *slow degrees of freedom* within region \mathcal{V}

Real-space RG from Information Theory perspective

$$e^{\mathcal{K}'(\mathcal{X}')} = \sum_{\mathcal{X}} e^{\mathcal{K}(\mathcal{X})} P_{\Lambda}(\mathcal{X}'|\mathcal{X})$$

Task: Learn $P_{\Lambda}(\mathcal{H} | \mathcal{V})$ such that \mathcal{H} tracks the *slow degrees of freedom* within region \mathcal{V}

$$\Lambda = (a_i, b_j, \lambda_i^j)$$

Real-space RG from Information Theory perspective

$$e^{\mathcal{K}'(\mathcal{X}')} = \sum_{\mathcal{X}} e^{\mathcal{K}(\mathcal{X})} P_{\Lambda}(\mathcal{X}'|\mathcal{X})$$

Task: Learn $P_{\Lambda}(\mathcal{H}|\mathcal{V})$ such that \mathcal{H} tracks the *slow degrees of freedom* within region \mathcal{V}

$$\Lambda = (a_i, b_j, \lambda_i^j)$$

Method: Require that *slow degrees of freedom* maximize spatial mutual information

Real-space RG from Information Theory perspective

$$e^{\mathcal{K}'(\mathcal{X}')} = \sum_{\mathcal{X}} e^{\mathcal{K}(\mathcal{X})} P_{\Lambda}(\mathcal{X}'|\mathcal{X})$$

Task: Learn $P_{\Lambda}(\mathcal{H}|\mathcal{V})$ such that \mathcal{H} tracks the *slow degrees of freedom* within region \mathcal{V}

$$\Lambda = (a_i, b_j, \lambda_i^j)$$

Method: Require that *slow degrees of freedom* maximize spatial mutual information

Formally: find max[$I_{\Lambda}(\mathcal{H}:\mathcal{E})$] over parameters Λ

ETH zürich

Mutual Information

Mutual Information

- Vanishes for independent variables
- Bounded by entropy from above
- More general than correlation functions

Mutual Information

$$I_{\Lambda}(\mathcal{H}:\mathcal{E}) = \sum_{\mathcal{H},\mathcal{E}} P_{\Lambda}(\mathcal{E},\mathcal{H}) \log \left(\frac{P_{\Lambda}(\mathcal{E},\mathcal{H})}{P_{\Lambda}(\mathcal{H})P(\mathcal{E})} \right)$$

- Vanishes for independent variables
- Bounded by entropy from above

ETH zürich

More general than correlation functions

$$P_{\Theta}(\mathcal{V},\mathcal{H}) = \frac{1}{\mathcal{Z}} e^{-E_{a,b,\theta}(\mathcal{V},\mathcal{H})}$$

Stage I. - Train RBMs to reproduce P(V,E) and P(V) via contrastive divergence

Stage I. - Train RBMs to reproduce P(V,E) and P(V) via contrastive divergence

Stage II. - Model $P_{\lambda}(H \mid V)$ as an RBM, obtain $P_{\lambda}(H,E)$, do Monte-Carlo to evaluate I(H:E)

$$H_I = -\sum_{\langle i,j \rangle} s_i s_j$$

$$H_I = -\sum_{\langle i,j \rangle} s_i s_j$$

Migdal-Kadanoff block-spins:

$$H_I = -\sum_{\langle i,j \rangle} s_i s_j$$

Migdal-Kadanoff block-spins:

14

$$H_I = -\sum_{\langle i,j \rangle} s_i s_j$$

Migdal-Kadanoff block-spins:

RG flow and critical exponents

RG flow reconstruction

RG flow and critical exponents

- RG flow reconstruction
- Position and type of critical points

RG flow and critical exponents

- RG flow reconstruction
- Position and type of critical points
- Critical exponents

Test case 2: the dimer model

Test case 2: the dimer model

- Defined by local constraints
- Partition function counts configurations

Test case 2: the dimer model

- Defined by local constraints
- Partition function counts configurations

RG of dimer model: mapping to height field h(x)

Test case 2: the dimer model

- Defined by local constraints
- Partition function counts configurations

RG of dimer model: mapping to height field h(x)

$$S_{dim}[h] = \int d^2x \ \left(\nabla h(\vec{x})\right)^2 \equiv \int d^2x \ \vec{E}^2(\vec{x})$$

Let's add noise!

Let's add noise!

- Let's add noise!
- Physically irrelevant, but strong pattern

- Let's add noise!
- Physically irrelevant, but strong pattern

- Let's add noise!
- Physically irrelevant, but strong pattern

- Let's add noise!
- Physically irrelevant, but strong pattern

Effective Hamiltonian from cumulant expansion

Effective Hamiltonian from cumulant expansion

$$\mathcal{K}'[\mathcal{X}'] = \log(Z_{\Lambda,0}[\mathcal{X}']) + \sum_{k=0}^{\infty} \frac{1}{k!} C_k[\mathcal{X}']$$

Effective Hamiltonian from cumulant expansion

$$\mathcal{K}'[\mathcal{X}'] = \log(Z_{\Lambda,0}[\mathcal{X}']) + \sum_{k=0}^{\infty} \frac{1}{k!} C_k[\mathcal{X}']$$

The "rangeness" and "n-body-ness"

Effective Hamiltonian from cumulant expansion

$$\mathcal{K}'[\mathcal{X}'] = \log(Z_{\Lambda,0}[\mathcal{X}']) + \sum_{k=0}^{\infty} \frac{1}{k!} C_k[\mathcal{X}']$$

The "rangeness" and "n-body-ness"

Effective Hamiltonian from cumulant expansion

$$\mathcal{K}'[\mathcal{X}'] = \log(Z_{\Lambda,0}[\mathcal{X}']) + \sum_{k=0}^{\infty} \frac{1}{k!} C_k[\mathcal{X}']$$

The "rangeness" and "n-body-ness"

EHzürich

EHzürich

Effective hamiltonian

 $\mathcal{K}[\mathcal{X}] = \mathcal{K}_0[\mathcal{X}] + \mathcal{K}_1[\mathcal{X}]$

$$\mathcal{K}[\mathcal{X}] = \mathcal{K}_0[\mathcal{X}] + \mathcal{K}_1[\mathcal{X}]$$

$$\mathcal{K}_0[\mathcal{X}] = \sum_{j=1}^n \mathcal{K}_{\mathrm{b}}[\mathcal{V}_j]$$

$$\mathcal{K}[\mathcal{X}] = \mathcal{K}_0[\mathcal{X}] + \mathcal{K}_1[\mathcal{X}] \qquad \qquad \mathcal{K}_0[\mathcal{X}] = \sum_{j=1}^n \mathcal{K}_b[\mathcal{V}_j]$$
$$Z_0 = \sum_{\mathcal{X}} e^{\mathcal{K}_0[\mathcal{X}]} = \prod_{j=1}^n Z_b, \qquad \qquad Z_b = \sum_{\mathcal{V}} e^{\mathcal{K}_b[\mathcal{V}]}$$

$$\mathcal{K}[\mathcal{X}] = \mathcal{K}_0[\mathcal{X}] + \mathcal{K}_1[\mathcal{X}] \qquad \qquad \mathcal{K}_0[\mathcal{X}] = \sum_{j=1}^n \mathcal{K}_b[\mathcal{V}_j]$$
$$Z_0 = \sum_{\mathcal{X}} e^{\mathcal{K}_0[\mathcal{X}]} = \prod_{j=1}^n Z_b, \qquad \qquad Z_b = \sum_{\mathcal{V}} e^{\mathcal{K}_b[\mathcal{V}]}$$

$$e^{\mathcal{K}'[\mathcal{X}']} = Z_0 \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{j=1}^n \underbrace{\frac{e^{\mathcal{K}_{\mathrm{b}}[\mathcal{V}_j]}}{Z_{\mathrm{b}}} P_{\Lambda}(\mathcal{H}_j|\mathcal{V}_j)}_{=:P_{\Lambda,\mathrm{b}}(\mathcal{H}_j,\mathcal{V}_j)}$$
$$= Z_0 \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{j=1}^n P_{\Lambda,\mathrm{b}}(\mathcal{V}_j|\mathcal{H}_j) P_{\Lambda,\mathrm{b}}(\mathcal{H}_j)$$
$$= Z_0 \prod_{\substack{j=1 \ P_{\Lambda,\mathrm{b}}(\mathcal{H}_j) \ \mathcal{X}}}^n P_{\Lambda,\mathrm{b}}(\mathcal{H}_j) \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{\substack{j=1 \ P_{\Lambda,\mathrm{b}}(\mathcal{V}_j|\mathcal{H}_j) \ =:P_{\Lambda,0}(\mathcal{X}|\mathcal{X}')}}$$
$$= Z_0 P_{\Lambda,0}(\mathcal{X}') \left\langle e^{\mathcal{K}_1[\mathcal{X}]} \right\rangle_{\Lambda,0} [\mathcal{X}'],$$

$$\mathcal{K}[\mathcal{X}] = \mathcal{K}_0[\mathcal{X}] + \mathcal{K}_1[\mathcal{X}] \qquad \qquad \mathcal{K}_0[\mathcal{X}] = \sum_{j=1}^n \mathcal{K}_b[\mathcal{V}_j]$$
$$Z_0 = \sum_{\mathcal{X}} e^{\mathcal{K}_0[\mathcal{X}]} = \prod_{j=1}^n Z_b, \qquad \qquad Z_b = \sum_{\mathcal{V}} e^{\mathcal{K}_b[\mathcal{V}]}$$

$$e^{\mathcal{K}'[\mathcal{X}']} = Z_0 \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{j=1}^n \underbrace{\frac{e^{\mathcal{K}_{\mathrm{b}}[\mathcal{V}_j]}}{Z_{\mathrm{b}}} P_{\Lambda}(\mathcal{H}_j|\mathcal{V}_j)}_{=:P_{\Lambda,\mathrm{b}}(\mathcal{H}_j,\mathcal{V}_j)}$$
$$= Z_0 \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{j=1}^n P_{\Lambda,\mathrm{b}}(\mathcal{V}_j|\mathcal{H}_j) P_{\Lambda,\mathrm{b}}(\mathcal{H}_j)$$
$$= Z_0 \prod_{\substack{j=1\\P_{\Lambda,0}(\mathcal{X}')}}^n P_{\Lambda,\mathrm{b}}(\mathcal{H}_j) \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{\substack{j=1\\P_{\Lambda,0}(\mathcal{X}|\mathcal{X}')}}^n P_{\Lambda,\mathrm{b}}(\mathcal{V}_j|\mathcal{H}_j)$$
$$= Z_0 P_{\Lambda,0}(\mathcal{X}') \left\langle e^{\mathcal{K}_1[\mathcal{X}]} \right\rangle_{\Lambda,0} [\mathcal{X}'],$$

$$\mathcal{K}'[\mathcal{X}'] = \log(Z_{\Lambda,0}[\mathcal{X}']) + \sum_{k=0}^{\infty} \frac{1}{k!} C_k[\mathcal{X}']$$

$$\mathcal{K}[\mathcal{X}] = \mathcal{K}_0[\mathcal{X}] + \mathcal{K}_1[\mathcal{X}] \qquad \qquad \mathcal{K}_0[\mathcal{X}] = \sum_{j=1}^n \mathcal{K}_b[\mathcal{V}_j]$$
$$Z_0 = \sum_{\mathcal{X}} e^{\mathcal{K}_0[\mathcal{X}]} = \prod_{j=1}^n Z_b, \qquad \qquad Z_b = \sum_{\mathcal{V}} e^{\mathcal{K}_b[\mathcal{V}]}$$

$$e^{\mathcal{K}'[\mathcal{X}']} = Z_0 \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{j=1}^n \underbrace{\frac{e^{\mathcal{K}_{\mathrm{b}}[\mathcal{V}_j]}}{Z_{\mathrm{b}}} P_{\Lambda}(\mathcal{H}_j|\mathcal{V}_j)}_{=:P_{\Lambda,\mathrm{b}}(\mathcal{H}_j,\mathcal{V}_j)}$$
$$= Z_0 \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{j=1}^n P_{\Lambda,\mathrm{b}}(\mathcal{V}_j|\mathcal{H}_j) P_{\Lambda,\mathrm{b}}(\mathcal{H}_j)$$
$$= Z_0 \prod_{\substack{j=1\\P_{\Lambda,\mathrm{b}}(\mathcal{X}')}}^n P_{\Lambda,\mathrm{b}}(\mathcal{H}_j) \sum_{\mathcal{X}} e^{\mathcal{K}_1[\mathcal{X}]} \prod_{\substack{j=1\\P_{\Lambda,\mathrm{b}}(\mathcal{X}|\mathcal{X}')}}^n P_{\Lambda,\mathrm{b}}(\mathcal{V}_j|\mathcal{H}_j)$$
$$= Z_0 P_{\Lambda,0}(\mathcal{X}') \left\langle e^{\mathcal{K}_1[\mathcal{X}]} \right\rangle_{\Lambda,0} [\mathcal{X}'],$$

$$\mathcal{K}'[\mathcal{X}'] = \log(Z_{\Lambda,0}[\mathcal{X}']) + \sum_{k=0}^{\infty} \frac{1}{k!} C_k[\mathcal{X}']$$

$$C_{1} = \langle \mathcal{K}_{1} \rangle_{\Lambda,0},$$

$$C_{2} = \langle \mathcal{K}_{1}^{2} \rangle_{\Lambda,0} - \langle \mathcal{K}_{1} \rangle_{\Lambda,0}^{2},$$

$$C_{3} = \langle \mathcal{K}_{1}^{3} \rangle_{\Lambda,0} - 3 \langle \mathcal{K}_{1}^{2} \rangle_{\Lambda,0} \langle \mathcal{K}_{1} \rangle_{\Lambda,0} + 2 \langle \mathcal{K}_{1} \rangle_{\Lambda,0}^{3}$$

Conclusions

- ML in condensed matter
- Information-theoretic view of RG
- The Real Space Mutual Information algorithm
- Optimality of MI

MKJ and Z. Ringel *Nature Physics* **14**, **578-582 (2018)** ²¹

Thank you!

Multiple RG steps

Multiple RG steps

MI - Training

MI - Training

The MI "thermometer"

The MI "thermometer"

KL-training failure

KL-training failure

0.5

0.4

0.3

0.2

0.1

0.0

-0.

-0.

-0.

-0.

0.15

0.12

0.09

0.06

0.03

0.00

-0.0

-0.0

-0.0

-0.1

-0.1

KL-training failure

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0.5

0.4

0.3

0.2

0.1

0.0

-0.

-0.

-0.

-0.

0.15

0.12

0.09

0.06

0.03

0.00

-0.0

-0.0

-0.0

-0.1

-0.1

Critical exponent

Critical exponent

