

AAPT Winter Meeting, San Diego, 9 Jan 2018

3D-Printable Things in Particle Physics Education

Julia Woithe, Alexandra Jansky, Oliver Keller, Sascha Schmeling

CERN S'Cool LAB

a hands-on particle physics learning laboratory

6000 students from all around the world

Current opportunities

S'Cool LAB Days

A full-day programme of handson experiments & CERN tours for high school students aged 16-19 participating in S'Cool LAB's PER projects.

1030 participants in 2017

Summer CAMP

A two-week residential particle physics summer camp for 30 high school students aged 16-19 from all around the world.

2nd camp in 2018 (24/07 - 04/08)

Cloud Chamber WS

A 90-minute hands-on particle physics workshop for high school students (aged 14 and above) and high-school teachers.

5780 participants in 2017 (4830 students & 950 teachers)

Affective & Cognitive Effects of S'Cool LAB

For the main study, students filled in questionnaires before and after their visit to CERN to assess their interest and self-concept in physics as well as the situational interest and self-concept in S'Cool LAB. In addition, relevant student and lab characteristics derived from Falk & Dierking's Contextual Model of Learning such as age, gender, prior experiences and grades, perceived cognitive load, tutor support, novelty, etc. were measured.

gender: 33% female, 67% male | average age: 17.0 years

Affective effects of S'Cool LAB

Do S'Cool LAB workshops foster students' students' interest and self-concept?

Dependent t-test, N=511, α=0.05, ** p<0.01, 2x5 items

Motivation variables pre / post

Cognitive effects of S'Cool LAB

Do S'Cool LAB workshops foster students' conceptual understanding?

Dependent t-test, N=454, α =0.05, ** p<0.01, 6 items

Conceptual understanding pre / post

Summary and Future Work

Participation in S'Cool LAB workshops leads to medium-sized cognitive and affective effects on high-school students, despite the relatively short intervention time. To maximise the effects of a visit to a hands-on learning lab like S'Cool LAB:

students (and their teachers) should

- be interested & curious about particle physics
- understand and speak English well enough
- come well prepared (organisation of the trip, information about the way of working and the underlying physics concepts)

labs like S'Cool LAB should

- be well organised
- aim for the right level of cognitive load of the experimental tasks
- find and train fantastic tutors

Future research will focus more on the cognitive effects of S'Cool LAB including a more precise measurement through a higher number of standardized concept test items.

Experiments: high-tech vs. low-cost

In S'Cool LAB: high-tech

3D printable things & education

e.g. www.thingiverse.com/education

model of a caffeine molecule www.thingiverse.com/ thing:876224

model of ALICE detector http://cern.ch/alicematters/ ?q=ALICE_3D_models

Experiments: high-tech vs. low-cost

In S'Cool LAB: high-tech

For the classroom: low-cost

Rutherford scattering model

Outreach tool of University of Göttingen © Ching-Yen Huang

DIY particle trapping

Trap and optical bench by Leybold ® link

Coberger, N. (2007). Moderne Modellexperimente als Schülerprojekt -Paulfallen und Teilchenbeschleuniger. <u>Thesis</u>, University Mainz Prof. Klaus Wendt

A 3D printable particle trap

A 3D printable particle trap

ATLAS – A Toroidal LHC ApparatuS

Toroidal magnet system – the T in ATLAS

The ATLAS Collaboration (2008). The ATLAS Experiment at the CERN Large Hadron Collider. *Journal of Instrumentation*, 3, S08003 http://cdsweb.cern.ch/record/1129811

Hermann, T., Jeřábek, O., Jende, K, & Kobel, M. (2012). Interactive simulation of the ATLAS detector http://atlas.physicsmasterclasses.org/en/wpath_teilche.nid1.htm

Designing a 3D printable model

(Image: CERN)

S'Cool LAB www.thingiverse.com/thing:1722230

Comparison between the ATLAS barrel toroid and the functional 3D-printed model

	Feature	ATLAS toroid ¹	Modell toroid
Dimensions	Inner diameter	9.4 m	9.3 cm
	Outer diameter	20.1 m	20.1 cm
	Length	25.3 m	24.7 cm
	Mass	830 t	860 g
Coils	Number of coils	8	8
	Material	Niobium-Titanium	Enamelled copper wire
	Operating temperature	4.5 K	Room temperature
	Turns per coil	120	80
	Total length of conductor	56 km	500 m
	Voltage	16 V	12 V
	Nominal current	20.5 kA	0.4 A
	Resistance	$0.16~\text{m}\Omega$	31 Ω
	Average magnetic field	0.5 T	0.8 mT

250 eV electron beam & model coils

More about the ATLAS magnet model

Video: https://cds.cern.ch/ record/2255117

Model with straws (German):

https://cds.cern.ch/ record/2244917

A 3D printable Bragg peak model

Bragg peak

Stone skipping

A 3D printable Bragg peak model

More 3D printable low-cost experiments!

What we've learned:

- 3D-printable experiments very well received
- Modern physics topics prominently featured
- Committee on International Physics Education
- Fruitful discussions with Exploratorium in SF
- Being <u>vacuum sealed</u> is fun

Thank you for your attention!

S'Cool LAB publications: <u>cern.ch/s-cool-lab</u>

Jeff's publications: cern.ch/jeff.wiener

