Searching for New Physics Without Colliders

Savas Dimopoulos Stanford University

The Length Scales in the Universe

80% of the energy scale left to explore Dark Matter, Strong CP, String theory suggests there is more

Outline

- Theoretical Motivation for Light Bosons
- Black Hole Superradiance

• Atom Interferometry and Atomic Clocks

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

 $EDM \thicksim e \ fm \ \theta_s$

Experimental bound: $\theta_s < 10^{-10}$

Peccei Quinn, Weinberg, Wilczek

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

Solution:Pecce $\theta_s \sim a(x,t)$ is a dynamical field, an axionWe

Peccei Quinn, Weinberg, Wilczek

Axion mass from QCD:

$$\begin{split} \mu_a \sim 6 \times 10^{-13} \mathrm{eV} \frac{10^{19} \mathrm{~GeV}}{f_a} \sim (300 \mathrm{~km})^{-1} \frac{10^{19} \mathrm{~GeV}}{f_a} \\ \mathrm{f}_a: \text{axion decay constant} \end{split}$$

Mediates new forces and can be the dark matter

Extra dimensions of String Theory imply a Plenitude of Universes

Laws of Nature depend on the shape of the extra dimensions

The Many Particles in String Theory

Arvanitaki, SD, Dubovsky, Kaloper and March-Russell (2009)

Extra dimensions of String Theory imply a Plenitude of Universes Complexity of Extra dimensions implies a Plenitude of Particles Discovery of these particles would be indirect evidence for the Multiverse

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

$$e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$$

while

 $\vec{B} = 0$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Solenoid

 \vec{B}

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid $e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$ while $\vec{B} = 0$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid $e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$ while $\vec{B} = 0$

Non-trivial topology: "Blocking out" the core still leaves a non-trivial gauge, but no mass

A Plenitude of (Nearly) Massless Particles

- Spin-0 non-trivial gauge field configurations: String Axiverse
- Spin-1 non-trivial gauge field configurations: String Photiverse
- Fields that determine the shape and size of extra dimensions as well as values of fundamental constants: Dilatons, Moduli, Radion

• Higher dimensional graviton or modifications of gravity at short distances

• Particle Mass
$$\sim \frac{M_{\text{Planck}}^2 e^{-S/2}}{f_a}$$

String Axion mass and the QCD axion

Particle Mass
$$\sim \frac{M_{\text{Planck}}^2 e^{-S/2}}{f_a}$$

Requirements on string theory for QCD axion to solve the strong CP problem

$\theta_{QCD} < 10^{-10}$ String corrections $< 10^{-10} \times QCD$

 $M_{Planck}^4 e^{-S} < 10^{-10} \times m_{\pi}^2 f_{\pi}^2$

 $S \gtrsim 200$ $S \sim 2 \pi / \alpha$

The QCD axion should not be special There could be **many** light axions

The Precision Frontier

•Axion Dark Matter

Detection

•Axion Force

Detection

- •Short Distance Tests
- of Gravity
- •Extra Dimensions

- •Equivalence principle at 15 decimals
- •Gravitational Wave
- detection at low frequencies
- •EDM searches
- •Tests of Atom Neutrality at 30 decimals

- Setting the Time Standard
- Variation of Fundamental

Constants

• Dilaton Dark Matter

Detection

Outline

• Black Hole Superradiance

with Arvanitaki, Dubovsky, Kaloper, March-Russell (2009) Arvanitaki, Baryakhtar, Dubovsky, Lasenby(2016)

also based on Arvanitaki, Dubovsky (2010) Arvanitaki, Baryakhtar, X. Huang (2014)

Black Holes as Nature's Detectors

 $(15 \text{ km}) \ge (M / 10 \text{ M})$

Range of astrophysical Black Holes: few M⊙ to 10¹⁰ M⊙ Sensitive to boson masses 10⁻²⁰-10⁻¹⁰ eV

Focus on stellar black holes

Super-radiant scattering of a massive object

Super-radiant scattering of a massive object

 \bigcirc

Super-radiant scattering of a wave

Black Hole Superradiance

Penrose Process

Ergoregion: Region where even light has to be rotating

Black Hole Superradiance

Penrose Process

-M

Extracts angular momentum and mass from a spinning black hole

Photons reflected back and forth from the black hole and through the ergoregion

Black Hole Bomb

Press & Teukolsky 1972

Photons reflected back and forth from the black hole and through the ergoregion

Superradiance for a massive boson

Damour et al; Zouros & Eardley; Detweiler; Gaina (Early 70s)

Particle Compton Wavelength comparable to the size of the Black Hole

Superradiance for a massive boson

Damour et al; Zouros & Eardley; Detweiler; Gaina (Early 70s)

Particle Compton Wavelength comparable to the size of the Black Hole

Gravitational Atom in the Sky

The gravitational Hydrogen Atom

Fine-structure constant:

$$\alpha = G_{\rm N} M_{\rm BH} \mu_a = R_g \mu_a$$

Principal (n), orbital (l), and magnetic (m) quantum number for each level

Main differences from hydrogen atom:

Levels occupied by bosons - occupation number >1077

In-going Boundary Condition at Horizon

Key Points About Superradiance

• For light axions(weak coupling) equation identical to Hydrogen atom

- Boundary conditions different:
 - Regular at the origin Ingoing (BH is absorber)

Superradiance Parametrics

Superradiance Condition

 $\omega_{axion} < m \ \Omega_+$ *Note: This is *a kinematic* condition

 $\alpha e^{-i(\omega t - m\phi)}$

Cerenkov

cone

 \mathbf{V}

m: magnetic quantum number Ω_+ : angular velocity of the BH

Universal Phenomenon: Si Superluminal rotational motion of a conducting cylinder

Superluminal linear motion - Cherenkov radiation $1/n(\omega) < v$

Condition can be extracted from requiring that $dA_{BH} > 0$

Superradiance Parametrics

Superradiance Rate

 $\tau_{sr}\,{\sim}0.6\times10^7~R_g$ for $R_g~\mu_a{\sim}~0.4$

Can be as short as 100 sec

When $R_g \mu_a >> 1$,

 $\tau_{sr} = 10^7 e^{3.7(\mu_a R_g)} R_g$

$$\tau_{sr} = \left(\frac{24}{a}\right)(\mu_a R_g)^{-9} R_g$$

 R_g between 1-100 km

QCD axion at high f_a matches stellar BH size:

$$\mu_a \sim 6 \times 10^{-11} \text{ eV} \frac{10^{17} \text{ GeV}}{f_a} \sim (3 \text{ km})^{-1} \frac{10^{17} \text{ GeV}}{f_a}$$

Evolution of Superradiance for an Axion

Superradiance instability, BH spin down

Evolution of Superradiance for an Axion

Superradiance instability, BH spin down

Gravity wave transitions of axions between levels

Evolution of Superradiance for an Axion

Superradiance instability, BH spin down

Gravity wave transitions of axions between levels

Gravity wave emission through axion annihilations

Superradiance: A stellar Black Hole History

Spin-Down of Astrophysical Black Holes

Range of the QCD axion excluded by current measurements $2 \times 10^{-11} > \mu_a > 6 \times 10^{-13} \text{ eV}$

Black Hole Spins at aLIGO

Black Hole Spins at aLIGO

Direct Super-Radiance Signatures GW annihilations

• Signal duration determined by the annihilation rate (can last thousands of years)

$$h_{\text{peak}} \simeq 10^{-22} \left(\frac{1 \,\text{kpc}}{r}\right) \left(\frac{\alpha/\ell}{0.5}\right)^{\frac{p}{2}} \frac{\alpha^{-\frac{1}{2}}}{\ell} \left(\frac{M}{10M_{\odot}}\right)$$

• Signal frequency drifts upwards with time

$$\frac{df}{dt} \simeq 10^{-12} \ \frac{\text{Hz}}{\text{s}} \left(\frac{f}{\text{kHz}}\right) \left(\frac{M_{\text{Pl}}}{f_a}\right)^2 \left(\frac{10^3 \text{ yr}}{T}\right)$$

Expected Events from Annihilations

• Large uncertainties coming from tails of BH mass distribution

Pessimistic: flat spin distribution and 0.1 BH/century Realistic: 30% above spin of 0.8 and 0.4 BH/century Optimistic: 90% above spin of 0.9 and 0.9 BH/century

Real-Time Superradiance

Black Holes produced from mergers are point sources candidates f (Hz)

Superradiance Prospects

- Probes axions between 10⁻²⁰ and 10⁻¹⁰ eV independent of DM abundance
- Spin-mass distribution measured from mergers may reveal the presence of an axion
- Blind searches at aLIGO for annihilations most promising for lighter axions
- Merger events allow to follow SR in real time

The Precision Frontier

•Axion Dark Matter

Detection

•Axion Force

Detection

- •Short Distance Tests
- of Gravity
- •Extra Dimensions

- •Equivalence principle at 15 decimals
- •Gravitational Wave
- detection at low frequencies
- •EDM searches
- •Tests of Atom Neutrality at 30 decimals

- Setting the Time Standard
- Variation of Fundamental

Constants

• Dilaton Dark Matter

Detection

The Length Scales in the Universe

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.