

Higgs Combinations ATLAS & CMS

Karsten Köneke

(on behalf of the CMS & ATLAS Collaborations) University of Freiburg

Outline

- Introduction
- Mass Measurements
- Differential Cross Sections
- Coupling Combinations and Interpretations
- Summary & Outlook

Karsten Köneke 2 /22

Consequences of Brout-Englert-Higgs Mechanism

- Higgs boson with mass:

$$n_{\mathrm{H}} = \sqrt{2\lambda}v$$
 not predicted!

Karsten Köneke 3 /22

Consequences of Brout-Englert-Higgs Mechanism

- Higgs boson with mass:

$$m_{\rm H} = \sqrt{2\lambda} v$$
 not predicted!

- W mass and interaction:

$$m_{\mathrm{W}} = \frac{vg}{2}$$

direct connection

Karsten Köneke 3 /22

Consequences of Brout-Englert-Higgs Mechanism

- Higgs boson with mass:

$$m_{\rm H} = \sqrt{2\lambda} v$$
 not predicted!

- W mass and interaction:

$$m_{\mathrm{W}} = \frac{vg}{2}$$

direct connection

- Fermion masses and Yukawa interactions:

$$m_f = \frac{\lambda_f v}{\sqrt{2}} \stackrel{\text{direct connection}}{\longleftarrow}$$

 $\frac{\mathbf{f_R}}{-i\frac{m_f}{v}} = -i\frac{g}{2}\frac{m_f}{m_{\mathrm{W}}}$

Karsten Köneke 3 /22

Outline

- Introduction
- Mass Measurements

$$m_{\rm H} = \sqrt{2\lambda} v$$
 not predicted!

- Differential Cross Sections
- Coupling Combinations and Interpretations
- Summary & Outlook

Karsten Köneke 4 /22

Run 2 Mass Measurement

• Not predicted by SM theory \Rightarrow once measured by experiment, everything else is determined

Karsten Köneke

From $H \rightarrow ZZ^* \rightarrow 4\ell \ (\ell=e,\mu)$:

From $H \rightarrow ZZ^* \rightarrow 4\ell + H \rightarrow \gamma\gamma$:

 m_H [GeV]

 $= 125.26 \pm 0.20 \text{ (stat)} \pm 0.08 \text{ (syst)} \text{ GeV}$

(expected: ± 0.23 (stat) ± 0.08 (syst) GeV)

IHEP 11 (2017) 047

PLB 784 (2018) 345

Run 2 Mass Measurement

• Not predicted by SM theory \Rightarrow once measured by experiment, everything else is determined

JHEP 11 (2017) 047

Karsten Köneke

(expected: ± 0.23 (stat) ± 0.08 (syst) GeV)

PLB 784 (2018) 345

Outline

- Introduction
- Mass Measurements
- Differential Cross Sections
- Coupling Combinations and Interpretations
- Summary & Outlook

Karsten Köneke 6 /22

Differential Measurements

- Probe kinematic properties of Higgs boson production
 - Fiducial regions matched between experiment and theory
 - Compare with available predictions \Rightarrow Input for improvement of predictions

Extracting Light-Quark Couplings from pt(H)

 p_T(H) sensitive to charm-Yukawa due to interference between charm- and top-mediated contributions in ggF

Coupling-dependent branching fractions

Total width and overall normalization largely contribute to constraint

CMS-PAS-HIG-17-028

Extracting Light-Quark Couplings from pt(H)

- p_T(H) sensitive to charm-Yukawa due to interference between charm- and top-mediated contributions in ggF

Freely-floating branching fractions

Outline

- Introduction
- Mass Measurements
- Differential Cross Sections
- Coupling Combinations and Interpretations
- Summary & Outlook

Karsten Köneke 9 /22

ATLAS-CONF-2018-031

Production Cross-Sections

(assume SM decay BRs)

Process	Significance	
$(y_H < 2.5)$	obs. (exp.)	
ggF	_	
VBF	6.5 (5.3)	
WH	} 4.1 (3.7)	
ZH		
$t\bar{t}H+tH$	5.8 (5.3)	

Karsten Köneke

ullet Define for i o H o f :

$$\mu_i := \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}$$

$$\mu^f := \frac{\mathcal{B}^f}{(\mathcal{B}^f)_{\mathrm{SM}}}$$

• Signal strength:

$$\mu := \mu_i \cdot \mu^f = \frac{\sigma_i \cdot \mathcal{B}^f}{(\sigma_i \cdot \mathcal{B}^f)_{\text{SM}}}$$

$$= \frac{\text{observed rate}}{\text{expected rate}}$$

⇒ Includes total signal theory uncertainty!

strength:

Global signal
$$(36 \text{ fb}^{-1})$$
 $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \text{ (stat.) } ^{+0.06}_{-0.05} \text{ (sig. th.) } ^{+0.06}_{-0.06} \text{ (other sys.)}$

(36-80 fb⁻¹) $\mu = 1.13^{+0.09}_{-0.08} = 1.13 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (exp.)} ^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$

Karsten Köneke

The κ Framework

Model and fit framework:

- Once Higgs boson mass is known, all other Higgs-boson parameters are fixed in the SM
- To allow for measurement deviations from SM rates, introduce coupling scale factors:

$$(\sigma \cdot BF) (i \to H \to j) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

$$= \sigma_{SM} (i \to H) \cdot BF_{SM} (H \to f) \cdot \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

Assumption:

Only one SM Higgs-like state at ~125 GeV with negligible width

LHC Higgs XSWG (arxiv:1307.1347)

Mass ~ Coupling Strength?

Assume: SM Higgs only couples to SM particles (no new physics)

- express effective couplings to photons, gluons, and Higgs width only via SM couplings; no BSM contribution in decays

Include limit on H → µµ

Not modelindependent measurement!

Mass ~ Coupling Strength?

14/22

Assume: SM Higgs only couples to SM particles (no new physics)

- express effective couplings to photons, gluons, and Higgs width only via SM couplings; no BSM contribution in decays

Include limit on $H \rightarrow \mu\mu$

Not modelindependent measurement!

Invisible Decays of the Higgs Boson

- Use effective coupling modifiers to gluons (κ_g) and photons (κ_γ)
- Assume $|\kappa_Z| \leq 1$ and $|\kappa_W| \leq 1$
- Include direct searches for invisible decays (CMS)

CMS-PAS-HIG-17-031

15/22

 $BR_{BSM} = BR_{undet}$

 $BR_{BSM} < 0.26 @ 95\% C.L.,$ more in backup

Karsten Köneke

Loop-induced Couplings

- In SM, ggF and H $\rightarrow \gamma\gamma$ are loop-induced
 - New Particles could contribute inside loop
 - \Rightarrow Test effective coupling modifiers to photons and (κ_{γ}) gluons (κ_{g})

Karsten Köneke 16/22

Ratios of Coupling Modifiers

0.4

ATLAS-CONF-2018-031

- Requires no assumption on total width of Higgs boson; assume all parameters >0
- New ttH result:
 - \Rightarrow Test compatibility between direct ttH coupling (κ_t) and coupling inside ggF loop, *i.e.*, effective coupling modifier to gluons (κ_g)

March $\lambda_{
m tg} = 0.96^{+0.16}_{-0.15}$, more in backup

8.0

0.6

Parameter value

Coupling to Fermions and Bosons

ATLAS-CONF-2018-031

- Scale all fermionic couplings and all bosonic couplings to Higgs boson by same modifier (κ_F , κ_V)
 - Good agreement amongst individual results and with SM

18/22

Simplified Template Cross Sections (STXS)

- Evolution of Run I coupling framework
 - Measure cross sections, instead of signal strengths
- Allows for combination across all decay modes

Stage-0 categories: separated into production modes

Combination of main channels

Karsten Köneke

Simplified Template Cross Sections (STXS)

Stage-I analysis: Combination of 52

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

Stage-I ggF categories: exclusive phase spaces

arxiv:1610.07922

ATLAS-CONF-2017-047

Effective Field Theory Interpretation

Extend SM with new Operators:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} c_i^{(6)} O_i^{(6)} / \Lambda^2$$

- Assumes no new particles below $\Lambda = I$ TeV
- Use Stage-I STXS $\gamma\gamma+4\ell$ combination:

ATL-PHYS-PUB-2017-018

Karsten Köneke

21/22

Summary & Outlook

What we know about the Higgs boson

- 2‰ precision on m_H measurements
- All measured properties consistent with SM expectations
- Many more $\sqrt{s} = 13 \text{ TeV}$ results could not be discussed here

Significant advances in theory, crucial for interpretation of measurements

• e.g., improvement in ggF cross-section calculation (N³LO QCD): theory uncertainty: $8.5\% \rightarrow 5.0\%$

Entering new era of interpretation of precise results

- with ~10 million produced Higgs bosons in 150 fb-1 during Run 2
- Differential cross sections
- Simplified Template Cross Sections
- Effective Field Theories

And even ~20 million produced Higgs bosons in 300 fb-1 in Run 3...

Karsten Köneke 22/22

Iotal Cross Section

• Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

May
$$57.0^{+6.0}_{-5.9}$$
 (Stat.) $^{+4.0}_{-3.3}$ (Syst.) pb [arxiv:1805.10197, accepted by PLB]

 $\frac{100}{2018}$ 61.1 ± 6.0 (stat.) ± 3.7 (syst.) pb CMS-PAS-HIG-17-028

SM: $55.6 \pm 2.5 \text{ pb}$

24/22 Karsten Köneke

Extracting Light-Quark Couplings from pt(H)

- Idea (PRL 118, 121801, 2017):
 - p_T(H) sensitive to charm-Yukawa due to interference between charm- and top-mediated contributions in ggF

Scan one κ_q ; profile other

- Coupling-dependent branching fractions
 - Total width and overall normalization largely contribute to constraint

$$-0.9 < \kappa_b < 0.9 \quad (-1.2 < \kappa_b < 1.2 \text{ expected})$$

$$-4.3 < \kappa_c < 4.3 \quad (-5.4 < \kappa_c < 5.3 \text{ expected})$$

- Freely-floating branching fractions
 - Only p_T(H) influence

$$-2.8 < \kappa_b < 9.9 \quad (-3.7 < \kappa_b < 7.3 \text{ expected}),$$

$$-18.0 < \kappa_c < 22.9$$
 (-15.7 < $\kappa_c < 19.3$ expected)

Branching fractions fixed to SM

$$-1.9 < \kappa_b < 2.9$$
 (expected)

$$-8.7 < \kappa_c < 10.6$$
 (expected)

CMS-PAS-HIG-17-028

Invisible Decays of the Higgs Boson

- Search for new invisible decays
 - e.g., VBF topology:

or combined analysis

BSM Interpretations

- Models with second Higgs doublet without tree-level FCNC
- Assume: Higgs boson with $m_H = 125$ GeV is lightest CP-even neutral Higgs boson
 - \Rightarrow Production and decay rates are (at tree level) only sensitive to α and β .

 $tan \beta = ratio of vevs$

 α = mixing angle between h and H

 m_A = mass of CP-odd Higgs boson

CMS-PAS-HIG-17-031

ATLAS-CONF-2018-031

Ratios of Cross-Sections and Branching Fractions

- No assumption on total width of Higgs boson
- Partial cancelation of systematics

atics
$$(\sigma \times B)_{if} = \sigma_{ggF}^{ZZ} \cdot \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \cdot \left(\frac{B_f}{B_{ZZ}}\right)$$

ATLAS-CONF-2018-031

Branching Fractions

Karsten Köneke 30/22

Production μ

(assume SM decay BRs $\mu^f = 1$)

Decay μ

(assume SM production $\mu_i = 1$)

• Define for $i \to H \to f$:

$$\mu_i := \frac{\sigma_i}{(\sigma_i)_{\mathrm{SM}}} \qquad \mu^f := \frac{\mathcal{B}^f}{(\mathcal{B}^f)_{\mathrm{SM}}}$$

• Signal strength:

$$\mu := \mu_i \cdot \mu^f = \frac{\sigma_i \cdot \mathcal{B}^f}{(\sigma_i \cdot \mathcal{B}^f)_{SM}}$$

$$= \frac{\text{observed rate}}{\text{expected rate}}$$

Global signal strength: $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \, (\text{stat.}) \, ^{+0.06}_{-0.05} \, (\text{sig. th.}) \, ^{+0.06}_{-0.06} \, (\text{other sys.})$

Models with effective Gluon and Photon Couplings

0.5

-0.5

1.5

2.5

Parameter value

Karsten Köneke 32/22

Models with effective Gluon and Photon Couplings

Karsten Köneke 33/22

Ratios of Coupling Modifiers

Separate Up- and Down-Type Quark Couplings; Separate Quark- and Lepton Couplings

Loop-induced Couplings

ATLAS-CONF-2018-031

Coupling to Fermions and Bosons

CMS-PAS-HIG-17-031

ATLAS-CONF-2018-031

ggF and VBF Cross Sections

ATLAS-CONF-2018-031

Karsten Köneke 38/22

Total Width Interpretation

• Reinterpret limit on BR_{BSM} as limit on total width

$$\frac{\Gamma_{H}}{\Gamma_{H}^{SM}} = \frac{\kappa_{H}^{2}}{1 - (BR_{undet.} + BR_{inv.})}$$

Karsten Köneke 39/22

Input Analyses

ATLAS-CONF-2018-031

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma)$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	36.1
H o au au	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H o \mu \mu$	79.8
$t\bar{t}H,\ H\to b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

Coupling Modifiers

	A'	T	LA	۹S.	-C	O	N	F.	-2()	8-	0	(;)
													_

		ATLAS-CO
Production	Effective modifier	Resolved modifier
$\sigma_{ m ggF}$	κ_g^2	$1.04\kappa_t^2 + 0.002\kappa_b^2 - 0.04\kappa_t\kappa_b$
$\sigma_{V{ m BF}}$	-	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$
$\sigma_{qq/qg o ZH}$	_	κ_Z^2
$\sigma_{gg o ZH}$	-	$2.46\kappa_Z^2 + 0.46\kappa_t^2 - 1.90\kappa_Z\kappa_t$
σ_{WH}	_	κ_W^2
$\sigma_{tar{t}H}$	_	κ_t^2
σ_{tHW}	-	$2.91\kappa_t^2 + 2.31\kappa_W^2 - 4.22\kappa_t\kappa_W$
σ_{tHq}	_	$2.63\kappa_t^2 + 3.58\kappa_W^2 - 5.21\kappa_t\kappa_W$
$\sigma_{bar{b}H}$	_	κ_b^2
Partial decay width	Effective modifier	Resolved modifier
$\Gamma_{\gamma\gamma}$	κ_{γ}^2	$1.59\kappa_W^2 + 0.07\kappa_t^2 - 0.67\kappa_W\kappa_t$
Γ_{ZZ}	_	κ_Z^2
Γ_{WW}	_	κ_W^2
$\Gamma_{ au au}$	_	$\kappa_{ au}^2$
Γ_{bb}	-	κ_b^2
$\Gamma_{\mu\mu}$	-	κ_{μ}^2
Γ_{gg}	κ_g^2	$1.11\kappa_t^2 + 0.01\kappa_b^2 - 0.12\kappa_t\kappa_b$
$\Gamma_{Z\gamma}$	$\kappa^2_{(Z\gamma)}$	$1.12\kappa_W^2 - 0.12\kappa_W\kappa_t$
Total width	Efective modifier	Resolved modifier
Γ_H	κ_H^2	$ (0.58 \kappa_b^2 + 0.22 \kappa_W^2 + 0.08 \kappa_g^2 + 0.06 \kappa_\tau^2 + 0.03 \kappa_Z^2 + 0.03 \kappa_c^2 + 0.0023 \kappa_\gamma^2 + 0.0015 \kappa_{(Z\gamma)}^2 + 0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2) / (1 - B_{BSM}) $

Coupling Modifiers

			Effective	
Production	Loops	Interference	scaling factor	Resolved scaling factor
$\sigma(ggH)$	√	b-t	$\kappa_{\rm g}^2$	$1.04 \cdot \kappa_{\rm t}^2 + 0.002 \cdot \kappa_{\rm b}^2 - 0.038 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma({ m VBF})$	_	_	O	$0.73 \cdot \kappa_{\mathrm{W}}^2 + 0.27 \cdot \kappa_{\mathrm{Z}}^2$
$\sigma(WH)$	_	_		$\kappa_{ m W}^2$
$\sigma(qq/qg \rightarrow ZH)$	_	_		$\kappa_{ m W}^2 \ \kappa_{ m Z}^2$
$\sigma(gg \to ZH)$	\checkmark	Z-t		$2.46 \cdot \kappa_Z^2 + 0.47 \cdot \kappa_t^2 - 1.94 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_		κ_{t}^2
$\sigma(\mathrm{gb} \to \mathrm{WtH})$	_	W - t		$2.91 \cdot \kappa_{t}^2 + 2.40 \cdot \kappa_{W}^2 - 4.22 \cdot \kappa_{t} \kappa_{W}$
$\sigma(qb \to tHq)$	_	W - t		$2.63 \cdot \kappa_{\rm t}^2 + 3.58 \cdot \kappa_{\rm W}^2 - 5.21 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(bbH)$	_	_		κ_{b}^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
$\Gamma^{ m WW}$	_	_		$\kappa_{ m W}^2$
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	κ_{γ}^2	$1.59 \cdot \kappa_{\mathrm{W}}^2 + 0.07 \cdot \kappa_{\mathrm{t}}^2 - 0.67 \cdot \kappa_{\mathrm{W}} \kappa_{\mathrm{t}}$
$\Gamma^{ au au}$	_	_	,	$\kappa_{ au}^2$
$\Gamma^{ m bb}$	_	_		$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	_		$\kappa_{\mu}^{\tilde{2}}$
Total width for $BR_{BSM} = 0$,
				$0.58 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.08 \cdot \kappa_{\rm g}^2 +$
$\Gamma_{ m H}$	\checkmark	_	$\kappa_{ m H}^2$	$+0.06 \cdot \kappa_{\tau}^{2} + 0.026 \cdot \kappa_{7}^{2} + 0.029 \cdot \kappa_{c}^{2} +$
			11	$+ 0.0023 \cdot \kappa_{\gamma}^{2} + 0.0015 \cdot \kappa_{Z\gamma}^{2} +$
				$+\ 0.00025 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2$

Simplified Template Cross Sections

Simplified Template Cross Sections

ATLAS-CONF-2017-047

ATLAS preliminary

Karsten Köneke

Effective Field Theory Interpretation

• Mass in matter: \sim 95% due to binding energy of strong force in nucleus (E = mc²)

- Mass in matter: \sim 95% due to binding energy of strong force in nucleus (E = mc²)
- Problem: Mass of elementary particles:
 - Mass terms in Lagrangian (boson: $-\frac{1}{2}m_A^2A_\mu A^\mu$; fermion: $-m_f\bar{\psi}\psi$) violate invariance under gauge transformation!

- Mass in matter: \sim 95% due to binding energy of strong force in nucleus (E = mc²)
- Problem: Mass of elementary particles:
 - Mass terms in Lagrangian (boson: $-\frac{1}{2}m_A^2A_\mu A^\mu$; fermion: $-m_f\bar{\psi}\psi$) violate invariance under gauge transformation!
- Solution:

(developed in 1960s by Brout, Engler, Higgs, and others)

- Introduce complex scalar field $\phi(x)$ with potential:

$$V(\phi) = \mu^2 \left(\phi^{\dagger} \phi\right) + \lambda \left(\phi^{\dagger} \phi\right)^2$$

- Mass in matter: \sim 95% due to binding energy of strong force in nucleus (E = mc²)
- Problem: Mass of elementary particles:
 - Mass terms in Lagrangian (boson: $-\frac{1}{2}m_A^2A_\mu A^\mu$; fermion: $-m_f\bar{\psi}\psi$) violate invariance under gauge transformation!
- Solution: (developed in 1960s by Brout, Engler, Higgs, and others)
 - Introduce complex scalar field $\phi(x)$ with potential:

$$V(\phi) = \mu^2 \left(\phi^{\dagger} \phi\right) + \lambda \left(\phi^{\dagger} \phi\right)^2$$

For $\lambda > 0$, $\mu^2 > 0$:

- Mass in matter: \sim 95% due to binding energy of strong force in nucleus (E = mc²)
- Problem: Mass of elementary particles:
 - Mass terms in Lagrangian (boson: $-\frac{1}{2}m_A^2A_\mu A^\mu$; fermion: $-m_f\bar{\psi}\psi$) violate invariance under gauge transformation!
- Solution:

(developed in 1960s by Brout, Engler, Higgs, and others)

- Introduce complex scalar field $\phi(x)$ with potential:

$$V(\phi) = \mu^2 \left(\phi^{\dagger} \phi\right) + \lambda \left(\phi^{\dagger} \phi\right)^2$$

For $\lambda > 0$, $\mu^2 < 0$:

Spontaneous symmetry breaking

- Mass in matter: \sim 95% due to binding energy of strong force in nucleus (E = mc²)
- Problem: Mass of elementary particles:
 - Mass terms in Lagrangian (boson: $-\frac{1}{2}m_A^2A_\mu A^\mu$; fermion: $-m_f\bar{\psi}\psi$) violate invariance under gauge transformation!
- Solution:

(developed in 1960s by Brout, Engler, Higgs, and others)

- Introduce complex scalar field $\phi(x)$ with potential:

$$V(\phi) = \mu^2 \left(\phi^{\dagger} \phi\right) + \lambda \left(\phi^{\dagger} \phi\right)^2$$

Expand $\phi(x)$ around new vacuum:

$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + 0 \right)$$

For $\lambda > 0$, $\mu^2 < 0$:

Spontaneous symmetry breaking

time

Higgs

LHC bunch-crossing rate: 40 MHz

Up to 60 pp collisions per bunch-crossing on average

→ ~2 billion pp collisions per second

49/22

- Proton-proton collision energy $E_{CM} = \sqrt{s}$
 - 7 TeV (2011), 8 TeV (2012): "Run 1"
 - 13 TeV (2015-2018): "Run 2"
- Luminosity
 - Integrated Luminosity $L = \int \mathcal{L} dt$

LID to 60 pp collisions

Up to 60 pp collisions per bunch-crossing on average

⇒ ~2 billion pp collisions per second

Karsten Köneke

- Proton-proton collision energy $E_{CM} = \sqrt{s}$
 - 7 TeV (2011), 8 TeV (2012): "Run 1"
 - 13 TeV (2015-2018): "Run 2"
- Luminosity
 - Integrated Luminosity $L = \int \mathcal{L} dt$

- Number of produced events $N = \sigma \cdot L$
 - Run I: $\sigma_{\text{Higgs}} \approx 25 \text{ pb}$
 - \Rightarrow N_{Higgs} \approx 25 pb · 25 fb-| = 625 000
 - Run 2: NHiggs $\approx 55 \text{ pb} \cdot 36 \text{ fb}^{-1} = 20000000$

LHC bunch-crossing rate: 40 MHz

Up to 60 pp collisions per bunch-crossing on average

→ ~2 billion pp collisions per second

- Proton-proton collision energy $E_{CM} = \sqrt{s}$
 - 7 TeV (2011), 8 TeV (2012): "Run 1"
 - 13 TeV (2015-2018): "Run 2"
- Luminosity
 - Integrated Luminosity $L = \int \mathcal{L} dt$

- Number of produced events $N = \sigma \cdot L$
 - Run I: $\sigma_{\text{Higgs}} \approx 25 \text{ pb}$
 - ⇒ $N_{Higgs} \approx 25 \text{ pb} \cdot 25 \text{ fb}^{-1} = 625 000$
 - Run 2: $N_{Higgs} \approx 55 \text{ pb} \cdot 36 \text{ fb}^{-1} = 20000000$

LHC bunch-crossing rate: 40 MHz

Up to 60 pp collisions per bunch-crossing on average

→ ~2 billion pp collisions per second

A Higgs boson is produced in only 1 out of 109 events

The ATLAS Detector

Karsten Köneke 50/22

The CMS Detector

Karsten Köneke 51/22

Magnetic field

: 3.8 T

Production and Decay Modes

Cross-section normalized to SM value

Karsten Köneke 52/22

Production and Decay Modes

• Define for $i \to H \to f$:

$$\mu_i := \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}$$

$$\mu^f := rac{\mathcal{B}^f}{(\mathcal{B}^f)_{\mathrm{SM}}}$$

• Signal strength:

$$\mu := \mu_i \cdot \mu^f = \frac{\sigma_i \cdot \mathcal{B}^f}{(\sigma_i \cdot \mathcal{B}^f)_{SM}}$$
$$= \frac{\text{observed rate}}{\text{expected rate}}$$

⇒ Includes total signal theory uncertainty!

Karsten Köneke 52/22

Production and Decay Modes

strength:

Global signal (36 fb^{-1}) $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \text{ (stat.) } ^{+0.06}_{-0.05} \text{ (sig. th.) } ^{+0.06}_{-0.06} \text{ (other sys.)}$

(36-80 fb⁻¹) $\mu = 1.13^{+0.09}_{-0.08} = 1.13 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (exp.)} ^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$

Loop-induced Couplings

- In SM, ggF and H $\rightarrow \gamma\gamma$ are loop-induced
 - New Particles could contribute inside loop
 - \Rightarrow Test effective coupling modifiers to gluons (κ_g) and photons (κ_γ)

CMS-PAS-HIG-17-031

Karsten Köneke 53/22

Higgs