BSM theory review

Oleg Antipin (IRB, Zagreb)
What is BSM?

Nobody really knows...
See, however Nikitenko's talk for an excess of events in a ~ 28 GeV dimuon mass region observed in the 8 TeV data.
What is BSM?

We can start by looking at experimental facts not addressed by SM...
Need for BSM (experiment)

- Dark Matter

mono-X searches@ LHC

Spin-independent DM-nucleon cross section vs \(m_{\text{DM}} \)

![Graph showing spin-independent DM-nucleon cross section vs DM Mass [GeV]](image)

- DM Simplified Model Exclusions
- **ATLAS** Preliminary July 2017

Spin-dependent DM-proton cross section vs \(m_{\text{DM}} \)

![Graph showing spin-dependent DM-proton cross section vs DM Mass [GeV]](image)

- DM Simplified Model Exclusions
- **ATLAS** Preliminary July 2017

Under the model assumptions:

- **collider searches**
 - are sensitive at low DM (<~5 GeV)
 - have ~3 orders of magnitude better sensitivity for \(\sigma_{\text{SD}} \) (DM-nucleon)

DM Mass [GeV]

- DM Simplified Model Exclusions
- **ATLAS** Preliminary July 2017

ATLAS Exotics Summary

CMS Dark Matter Summary
Need for BSM (experiment)

- Neutrino masses

\[\frac{(HL)^2}{\Lambda_L} \quad \Lambda_L \sim 10^{14} \text{ GeV} \]

Seesaw

Type-I (RH neutrino) Type-II (scalar triplet) Type-III (fermion triplet)

LHC

Lepton number violating signals at the LHC
Need for BSM (experiment)

- Neutrino masses

\[
\mathcal{L} = \mathcal{L}_{\text{SM}} + |D_{\mu}T|^2 - M^2 |T|^2 + \frac{1}{2} \left(\lambda_L LLLT + M\lambda_H HHT^* + \text{h.c.} \right)
\]

\[
\frac{(HL)^2}{\Lambda_L} \quad \Lambda_L \sim 10^{14} \text{ GeV}
\]

\[
m_\nu = \frac{\lambda_L \lambda_H v^2}{M}
\]

\[pp \to T^{++}T^{--} \rightarrow \begin{cases}
\ell_1 \ell_2 \bar{\ell}_1 \bar{\ell}_2 & \propto \lambda_L^4 \\
W^+W^+W^-W^- & \propto \lambda_H^4 \\
\ell_1 \ell_2 W^+W^+ & \propto \lambda_L^2 \lambda_H^2
\end{cases}
\]

Production controlled by electroweak couplings

![Feynman diagrams and production cross-sections](image)
Need for BSM (experiment)

- Matter-antimatter asymmetry
- muon g-2
-
Need for BSM (theory)

- Higgs potential metastability

Running of the Quartic Coupling, Metastability

Need to measure Higgs, top mass and quartic coupling

Could this be a guiding principle?
Intriguing results from LHCb and Belle experiment with anomalies in B and D meson systems

\[R(D^{(*)}) = \frac{Br(B \rightarrow D^{(*)}\tau\nu)}{Br(B \rightarrow D^{(*)}l\nu)} \]

• Flavour problem

Talks later today by Capriotti, Mihara, Kamenik

Need for BSM (theory)
Need for BSM (theory)

- Strong CP problem

\[L_{QCD} = \bar{q}(i\gamma_\mu D_\mu - m_q)q - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{32\pi^2} \tilde{F}_{\mu\nu} F^{\mu\nu} \]

Experimentally (neutron EDM) : \(\theta < 10^{-10} \)

why is it so un-naturally small?

Most popular solution: AXION

Peccei Quinn 77

Axion can be also DM candidate!
Promote the θ-term to a field “a”:

$$L_{axion} = \frac{1}{2} \partial_\mu a \partial^\mu a + \frac{a}{32\pi^2 f_a} \tilde{F}_{\mu\nu} F^{\mu\nu}$$

$$\theta_{eff} \rightarrow \theta + \frac{<a>}{f_a}$$

The field “a” has a potential just like Higgs and it is minimised for

$$\theta_{eff} = 0$$

It is a dynamical solution independent of the value of the original value of the θ-term.
Need for BSM (theory)

- Gauge hierarchy problem (naturalness). Dominant guiding principle for BSM model building

The only dimensionful (quadratically divergent) parameter in the SM:

\[m^2 H^2 \]

Small value of this parameter in the SM (compared to, say, Planck scale) is un-natural due to huge fine-tuning
Need for BSM (theory)

- Cosmological constant problem
- Gravity (gravity waves) see talk by N. Leroy
- Proton decay
- ...

Not the main LHC focus…
Scale of the new physics

High scale?

• Proton Decay \(\frac{u^de}{M_{NP}^2} \quad M_{NP} \sim 10^{16} \text{ GeV} \)

• Neutrino mass \(\frac{(HL)^2}{\Lambda_L} \quad \Lambda_L \sim 10^{14} \text{ GeV} \)

Low scale?

• CC problem \(M_{NP} \sim 10^{-3} \text{ eV} \)

• Naturalness \(M_{NP} \sim 1 \text{ TeV} \)
How do we actually build models?
Two approaches to BSM

• UV guides/predicts IR (strings, GUTs, naturalness)

• IR constraints UV (experiments drive theory)
Naturalness principle

Small value for the coupling is natural if it is associated to the symmetry

- the fermion mass parameters are protected by chiral symmetry

- Un-naturalness (apparent fine-tuning of the parameter) may signal new physics

- the rho meson (QCD) to cutoff the EM contribution to the charged pion mass

\[
M_{\pi^\pm}^2 - M_{\pi^0}^2 = \frac{3\alpha}{4\pi} M^2 \rho \frac{F_\rho}{f_\pi^2} \ln \frac{F_\rho^2}{F_\rho^2 - f_\pi^2}
\]

\[
\Lambda_{NP}^2 < \frac{\delta M^2}{\alpha}
\]
The only dimensionful (quadratically divergent) parameter in the SM:

\[m^2 H^2 \]

Small value of this parameter in the SM (compared to, say, Planck scale) is un-natural due to huge fine-tuning.

In a cutoff scheme, with cutoff \(\Lambda \)

\[
m^2 = m_0^2 \left(1 + f_1(\lambda, g_i) \log \frac{\Lambda^2}{m_0^2} \right) - f_2(\lambda, g_i) \Lambda^2
\]

- \(m_0 \) is bare mass parameter
- \(m \) is renormalised (measured) mass parameter

• new physics at the TeV scale to cancel the UV sensitivity of the Higgs mass?
Approaches to Higgs naturalness

Single vacuum solutions

1. Symmetry (SUSY, conformality)
2. Form-factor (Composite Higgs/TC)
3. Low UV scale (extra-dimensions, RS, . . .)

Many vacua solutions (recent developments)

1. Antropic multiverse
2. NNnaturalness with many SM copies
3. Relaxion and cosmological scanning
Single vacuum solutions:

\[m^2 = m_0^2 (1 + f_1(\lambda, g_i) \log \frac{\Lambda^2}{m_0^2}) - f_2(\lambda, g_i) \Lambda^2 \]

- **SM tuning**: no predictions for the BSM physics
- **SUSY**: \(f_2 = 0 \) by supersymmetry
- **Tuning via conformal symmetry**: \(m_0 = 0, \, \Lambda \) is dropped
- **Composite Higgs/TC**: Higgs is not fundamental
Many vacua solutions:

nNaturalness

Some sectors are accidentally tuned at the 1/N level:

$$|m_H^2|_{\text{min}} \sim \Lambda_H^2 / N.$$

Need to change dramatically the cosmological history and hierarchy problem is rephrased into question on how to reheat only sectors with fine-tuned Higgs mass. For this “reheaton” field is introduced which decays predominantly to small Higgs mass sector
Many vacua solutions:

relaxion mechanism in a nutshell

\[m^2 H^2 \]

- Higgs mass-squared promoted to a field
- The field evolves in time in the early universe and scans a vast range of Higgs mass
- The Higgs mass-squared relaxes to a small negative value
- The electroweak symmetry breaking stops the time-evolution of the dynamical system

Example of self-organised criticality when the dynamical evolution of a system is stopped at a critical point due to back-reaction
Relaxion mechanism

Minimal model: \(\text{SM} + \text{QCD axion} + \text{inflaton} \)

\[
(-M^2 + g\phi)|h|^2 + V(g\phi) + \frac{1}{32\pi^2} \frac{\phi}{f} \tilde{G}^{\mu\nu} G_{\mu\nu}
\]

Below QCD scale:

\[
(-M^2 + g\phi)|h|^2 + (gM^2\phi + g^2\phi^2 + \cdots) + \Lambda^4 \cos(\phi/f) \quad \Lambda^4 \sim f_\pi^2 m_\pi^2
\]

- During inflation axion slow-rolls and scans Higgs mass
- Once mass gets negative, Higgs obtains a vev
- Axion potential barriers (linear in the vev) grow and stop scanning

\[
m_\pi^2 \sim m_q f_\pi \sim y_q < h > f_\pi \quad \rightarrow \quad y_q f_\pi^3 < h > \cos \frac{\phi}{f}
\]
Relaxion mechanism

\[(-M^2 + g\phi)|h|^2 + (gM^2\phi + g^2\phi^2 + \cdots) + \Lambda^4 \cos(\phi/f) \]

Rolling stops when slopes match:

\[gM^2 \sim \frac{m_W^2 f^2}{f} \]

slow-roll

\[<h> \neq 0 \]

\[<h> = 0 \]

axion is oscillations around minima

FIG. 1: Here is a characterization of the axion's potential in the region where the barriers begin to become important. This is the one-dimensional slice in the field space after the Higgs is integrated out, effectively setting it to its minimum. To the left, the Higgs vev is essentially zero, and is \(O(m_W) \) when the barriers become visible. The density of barriers are greatly reduced for clarity.
Conclusions

• No NP from the LHC so far
• However, new ideas continue to emerge in theoretical community
• A lot of new physics is still to be tested!
The topics to be discussed include:

1. DM (Theory, Observations, Detection)
2. Structures in the Universe
3. New observational probes of the Universe
4. Multimessenger cosmology (Gravitational waves, Cosmic rays, Neutrinos)
5. Unknown physics in the Universe