Jet Substructure Measurements in Top Quark Production in CMS

Torben Dreyer for the CMS collaboration

LHC Days 2018
Split, Croatia
Top mass

- Recent top mass measurements:
 - $m_t = 172.25 \pm 0.08$ (stat+JSF) ± 0.62 (syst) GeV
 - Very precise!
 - Measurement using event generators
 - Connection to well defined mass not precisely known

- Pole mass from inclusive cross section
 - Measurement of $\sigma_{tt} \rightarrow m_t$
 - $m_t = 173.8^{+1.7}_{-1.8}$ GeV
 - Larger uncertainties

- Better understanding of m_t crucial
Boosted top analytic calculations

- Calculation of jet substructure in boosted top at particle level
- Fully merged top jets
- Consistent treatment of color and hadronization effects

- **Comparison to MC**
 - → calibration of the top mass in MC

 e^+e^- collisions: [Phys.Rev.Lett. 117 (2016)]

- **Comparison to data**
 - → well defined top mass

→ **our goal**: measurement in data
Measurement of top jet mass

- First measurement of the jet mass distribution
- Unfolded to particle level
- 8 TeV data
- Lepton+jets $t\bar{t}$ decays

- Top quarks reconstructed with
 - Cambridge/Aachen jets R=1.2
 - $p_T > 400$ GeV

Unfolding to particle level
Top mass extraction

- Extract m_t from normalized cross section
 - no analytic calculations available

- Extraction of MC top mass (sensitivity test!)
 - Result:
 - $m_t = 170.8 \pm 9.0 \text{ GeV}$
 - $= 170.8 \pm 6.0 \text{ (stat.)} \pm 2.8 \text{ (syst)} \pm 4.6 \text{ (model)} \pm 4.0 \text{ (theo)} \text{ GeV}$
 - Stat. Uncertainties dominant

- Long time goal
 - well defined mass from comparison to calculations!

13 TeV prospects

- Higher statistics on 13 TeV
 - Smaller jets
 - More p_T bins and sideband regions
- Grooming
 - Better mass/reconstruction resolution
 → finer binning
 → higher sensitivity on m_t
- Study new jet algorithms (e.g. XCones)
- Large improvements expected on both stat. and syst. uncertainties
Jet mass at 13 TeV

- Jet mass from top tagging studies
 - Anti-k_T jets $R = 0.8$
 - PUPPI pileup subtraction
 - Soft drop groomed
 - $\mu +$ jets channel

- High statistics
- Narrow mass peak

[CMS-DP-2017-026]
Jet substructure at 13 TeV

- Many boosted tops at 13 TeV
- Jet substructure important for top tagging
 - Example: N-subjettiness τ_N [JHEP 1103 (2011) 015]
 - Estimator for a N-subjets hypothesis
 - Slight disagreement for high values of τ_3/τ_2
 - Tagging efficiency described by MC
- Jet substructure further important for
 - b tagging, quark-gluon discrimination, ...
Jet substructure at 13 TeV

- First measurement of several substructure variables $t\bar{t}$ production in CMS

- Resolved $t\bar{t}$ decays – lepton+jets channel

- Important input for
 - MC simulation tuning
 - Calculations of substructure

- Improve understanding of substructure

- Slight disagreement for high values of τ_3/τ_2

[arXiv:1808.07340]
Jet substructure at 13 TeV

- Measured for different jet flavor

- In samples enriched with
 - b jets
 - Light quark jets
 - Gluon jets

- Here:
 - charged particle multiplicity
 - Important for quark-gluon discrimination

- Slightly worse description for b jets

[arXiv:1808.07340]
Extraction of α_s from Jet Substructure

- Value of $\alpha_s(m_Z)$ extracted
 - From ΔR_g : angle between groomed subjets (Soft-drop)
 - b-jet sample
 - Charged particles

\[\alpha_s(m_Z) = 0.115^{+0.015}_{-0.013} \]

- Leading order plus leading log accuracy
- Limited by FSR scale variations

[arXiv:1808.07340]
Summary

- **Boosted top jet mass**
 - First measurement at 8 TeV
 - 13 TeV measurement in progress
 - Goals: \(\rightarrow \) comparison to theory calculations
 \(\rightarrow \) extraction of well defined top mass

- **Jet substructure at 13 TeV**
 - Measured in resolved \(t \bar{t} \)
 - Important input for simulation and calculations
 - Extraction of \(\alpha_s \) from jet substructure

\(\rightarrow \) better understanding of MC and fundamental physics of jet substructure