Dark Matter at the LHC

LHC days in Split September 17th-22nd, Split

Pablo Martínez Ruiz del Árbol

On behalf of the CMS, ATLAS and LHCb Collaborations

Dark Matter searches in colliders

- [>] The nature of **Dark Matter** (DM) remains nowadays one of the misteries of the universe.
- [>] If DM interacts beyond gravity we should observe **new phenomena** in various experiments.
- > A very week interaction might require **all of them** to provide an observation or discovery.

Disclaimer: Showing just a selection/summary of results, use the links for more information.

The LHC: a marvellous machine

[>] The LHC has shown a superb performance since the beginning of the data taking in 2010.

Looking for DM at colliders

Direct production of DM

- > SM object back-to-back to the missing momentum.
- [>] Mono-X searches: DM + ISR gluons, photons, W, Z and H.
- [>] DM in association with heavy flavour (top, top-antitop, bb).
 - Mediator resonances and offshell.
- > A mediator decaying finally into SM products.
- Dijet resonances: low and high mass, narrow and broad.
- Dimuon mass spectra: dark photons.
 - Long decay chains: SUSY like
- \succ R-parity conserved → DM candidate with SM products.
- Strong production: gluinos, squarks, stops.
- > EWK production: chargino/neutralino, sleptons, staus.

P. Martinez/IFCA

Monojet signatures: gluon, Z, and W

- > DM produced in association with one gluon, W, or Z decaying hadronically.
- > Jet back-to-back with missing momentum.
- > Typical backgrounds are $Z(\rightarrow UU)$ +jets and W+jets.
- [>] Use of AK4 and AK8 jets (for boosted W and Z).

Mono photon signatures

- > DM produced in association with one very energetic photon.
- Similar to previous search but with photon instead of jet.
- > Main backgrounds are Z(→ υ υ)+gamma and W(→ $l\upsilon$)+gamma.

Mono Z in the dilepton channel

P. Martinez/IFCA

Dark Matter at the LHC

7

Mono Higgs signatures

- > DM produced in association with a Higgs boson.
- ≻ Several analysis according to decay: $H \rightarrow bb$, $\tau\tau$, $\gamma\gamma$, WW (soon).
- > Imposing constraint on the mass of the Higgs boson.
- ≻ Dominated by H → bb where backgrounds are Z(nunu) and W(lnu) + jets.
- > Interpreted in the 2HDM and Z' barionic models.

DM in association with 1(2) top(s)

QQQC

لال

 $\phi(a)$

 $\phi(a)$

- > DM produced in association with pairs of top or single top.
- > Exploring the different top decays: 0, 1, and 2 leptons.
- > Interpreted in terms of scalar and pseudoscalar mediators.
- > Exclusion of scalar mediators up to 250 GeV approximately.

Dijet resonances

Ζ'

q

- > Dijet resonances provide a powerful handle to constrain DM interaction cross section.
- Background is SM QCD: fitting signal shapes over a background model.
- > Exploring low and high masses with narrow and broad resonances.
- > Low mass analysis using trigger objects to reduce pt thresholds.

Dark Matter at the LHC

DM dark photons

Search for kinetic mixing with the offshell photon in the dimuon channels.

Putting all together

- > Dijet resonances dominates the exclusion for both vector and axial-vector mediators.
- > Both vector and axial-vector mediators excluded up to ~ 2.5 TeV.

Comparison with other experiments

> Fixing the limits on the couplings allows to translate xsections into DM production xsections.

P. Martinez/IFCA

Dark Matter at the LHC

13

SUSY-like results

- > Assuming R-parity is conserved SUSY models provide candidates for DM (LSP).
- Experiments have a quite large program of SUSY searches in many different topologies.
- > MET is still a key ingredient but in these searches there are also many SM particles. .

SUSY results

ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫L dt[ft	-1]	Ma	ss limit		$\sqrt{s} =$	7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	\tilde{q} [2x, 8x Degen.] \tilde{q} [1x, 8x Degen.]		0.43	0.9	1.55		$m(\tilde{\chi}_1^0) < 100 \text{ GeV}$ $m(\tilde{q}) \cdot m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1712.02332 1711.03301
	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1	ig ig			Forbidden	0.95-1.6	2.0	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 900 \text{ GeV}$	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	- Yes	36.1 36.1	ĩ g				1.85		$m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> , µ	7-11 jets 4 jets	Yes	36.1 36.1	ë ë			0.98	1.8		$m(\tilde{\chi}_1^0) <400 \text{GeV} \ m(\tilde{g}) \cdot m(\tilde{\chi}_1^0) =200 \text{GeV}$	1708.02794 1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ 3 <i>e</i> , μ	3 b 4 jets	Yes -	36.1 36.1	196 196				1.25	2.0	m($\tilde{\chi}_1^0$)<200 GeV m(\tilde{g})-m($\tilde{\chi}_1^0$)=300 GeV	1711.01901 1706.03731
3 rd gen. squarks direct production	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 36.1	$egin{array}{ccc} ilde{b}_1 & & & \ ilde{b}_1 &$	Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7		$m(\tilde{\chi}_{1}^{0})=3$ $m(\tilde{\chi}_{1}^{0})=200$ G	$m(\tilde{\chi}_{1}^{0})$ =300 GeV, BR $(b\tilde{\chi}_{1}^{0})$ =1 300 GeV, BR $(b\tilde{\chi}_{1}^{0})$ =BR $(t\tilde{\chi}_{1}^{+})$ =0.5 eV, $m(\tilde{\chi}_{1}^{+})$ =300 GeV, BR $(t\tilde{\chi}_{1}^{+})$ =1	1708.09266, 1711.03301 1708.09266 1706.03731
	$\tilde{b}_1\tilde{b}_1,\tilde{\iota}_1\tilde{\iota}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1				0.7			$m(\tilde{\chi}_{1}^{0})=60 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
	$ \begin{split} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 &\rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{H} \text{ LSP} \end{split} $	0-2 <i>e</i> , <i>µ</i> (0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	$egin{array}{ccc} ella_1 & & & \ ella_1 & & \ e$	Forbidden		1.0 0.4-0.9 0.6-0.8		$m(\tilde{\chi}_{\downarrow}^{0})=150 \text{ G}$ $m(\tilde{\chi}_{\downarrow}^{0})=300 \text{ G}$	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}1GeV\\ & ieV, m(\tilde{\chi}_{1}^{\pm}){-}m(\tilde{\chi}_{1}^{0}){=}5GeV, \tilde{t}_{1}\approx\tilde{t}_{L}\\ & ieV, m(\tilde{\chi}_{1}^{\pm}){-}m(\tilde{\chi}_{1}^{0}){=}5GeV, \tilde{t}_{1}\approx\tilde{t}_{L} \end{split}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	Multiple 2c mono-iet	Yes	36.1 36.1 36.1	$\tilde{\iota}_1$ $\tilde{\iota}_1$ $\tilde{\iota}_1$ $\tilde{\iota}_2$		0.46	0.48-0.84 0.85		m($\tilde{\chi}_1^0$)=150 G	ieV, $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{r}_{1} \approx \tilde{r}_{L}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{r}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$ $m(\tilde{c},\tilde{c})-m(\tilde{v}_{1}^{0})=50 \text{ GeV}$	1709.04183, 1711.11520 1805.01649 1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e,μ	4 b	Yes	36.1	τ ₂		0.10	0.32-0.88		$m(\tilde{\mathcal{X}}_1^0)$	$=0 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=180 \text{ GeV}$	1706.03986
EW direct	$\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ via WZ	2-3 e,µ		Yes	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$			0.6			m($\tilde{\chi}_{1}^{0}$)=0	1403.5294, 1806.02293
	ũ±ũ ⁰ WI	ee, μμ fffsodfbb	≥ 1	Yes	36.1	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.17 $\tilde{z}^{\pm}/\tilde{z}^{0}$	0.26					$m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=10 \text{ GeV}$	1712.08119
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{\mp} \vee \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	2 τ	-	Yes	36.1		.22		0.76	$m(\tilde{\chi}_1^{\dagger})$	$m(\tilde{\chi}^{0})=100$	$ \begin{array}{l} \min\{\tilde{\tau}_{1}\}=0, \ m(\tilde{\tau},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{0})+m(\tilde{\chi}_{1}^{0})) \\ \operatorname{GeV}, \ m(\tilde{\tau},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{0})+m(\tilde{\chi}_{1}^{0})) \end{array} $	1708.07875 1708.07875
	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}},\tilde{\ell}{\rightarrow}\ell\tilde{\chi}^0_1$	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	ĩ ĩ 0.18		0.5				$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell})$ - $m(\tilde{\chi}_1^0)=5~GeV$	1803.02762 1712.08119
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 4 <i>e</i> , µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	<u>Й</u> 0.13- <u>Й</u>	0.23		0.29-0.88			$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 1804.03602
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1			0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable g R-hadron	SMP		-	3.2	ĝ				1.6			1606.05129
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple		32.8	$\tilde{g} = [\tau(\tilde{g}) = 100 \text{ ns}, 0.2]$! ns]			1.6	2.4	m($\tilde{\chi}_{1}^{0}$)=100 GeV	1710.04901, 1604.04520
	GMSB, $\chi_1^{\circ} \rightarrow \gamma G$, long-lived χ_1° $\tilde{g}g, \tilde{\chi}_1^{0} \rightarrow eev/e\mu v/\mu\mu v$	2γ displ. ee/eµ/μ	μ-	Yes -	20.3	$\frac{\chi_1}{\tilde{g}}$		0.44		1.3	6 <	$1 < \tau(\tilde{\chi}_1) < 3$ ns, SPS8 model $c\tau(\tilde{\chi}_1^0) < 1000$ mm, m $(\tilde{\chi}_1^0) = 1$ TeV	1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	еµ,ет,µт	-	-	3.2	ν̃,				1.3	9	$\lambda'_{211} = 0.11, \lambda_{132/133/233} = 0.07$	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0	Yes	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12}]$	$k \neq 0$]		0.82	1.33		$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	0 4	5 large-R je Multiple	ets -	36.1 36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, \\ \tilde{g} = [\chi_{112}^{\prime\prime\prime} = 2e-4, 2e-5]$	1100 GeV]		1.0	1.3 1.9	9 2.0	Large λ_{112}'' m $(\tilde{\chi}_{1}^{0})$ =200 GeV bino-like	1804.03568 ATLAS-CONF-2018-003
	$\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\tilde{k}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple Multiple		36.1	$\tilde{g} = [\lambda''_{323} = 1, 1e-2]$ $\tilde{g} = [\lambda''_{323} = 2e-4, 1e-2]$		0.5	5 1.0	1.8	2.1	$m(\tilde{x}_1^0)$ =200 GeV, bino like $m(\tilde{x}_1^0)$ =200 GeV, bino like	ATLAS-CONF-2018-003
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 l	, -	36.7	$\tilde{t}_1 [qq, bs]$		0.42	0.61			m(1)=200 Gev, bin0-like	1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	2 e, µ	2 b	-	36.1	ĩ ₁				0.4-1.45		$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
*Onlv	a selection of the available ma	uss limits on r	new state	s or	1	0 ⁻¹				1			

P. Martinez/IFCA

Conclusions

- > The experiments at the LHC have very broad and ambitious DM search program.
- [>] This is possible thanks to the superb performance of the LHC machine.
 - > Run 2 will end up with up to 150 fb⁻¹ most of it still to be analyzed.
- > Unfortunately no evidence of a signal found so far.
- [>] But increasing luminosity will allow better limits in the time to come (or discovery!).
 - Specially for vector and axial-vector mediator models.
- > Interest is also turning now on searches for long-lived particles.
 - > This kind of tolopologies require dedicated reconstruction techniques.
- > A lot of new results will come in the next months. Stay tuned!

P. Martinez/IFCA

Backup

Dark Matter at the LHC

Putting all together

- > Dijet resonances dominates the exclusion for both vector and axial-vector mediators.
- > Both vector and axial-vector mediators excluded up to ~ 2.5 TeV.

Comparison with other experiments

[>] Fixing the limits on the couplings allows to translate xsections into DM production xsections.

P. Martinez/IFCA

Dark Matter at the LHC

19

[>] Fixing the limits on the couplings allows to translate xsections into DM production xsections.

[>] Fixing the limits on the couplings allows to translate xsections into DM production xsections.

