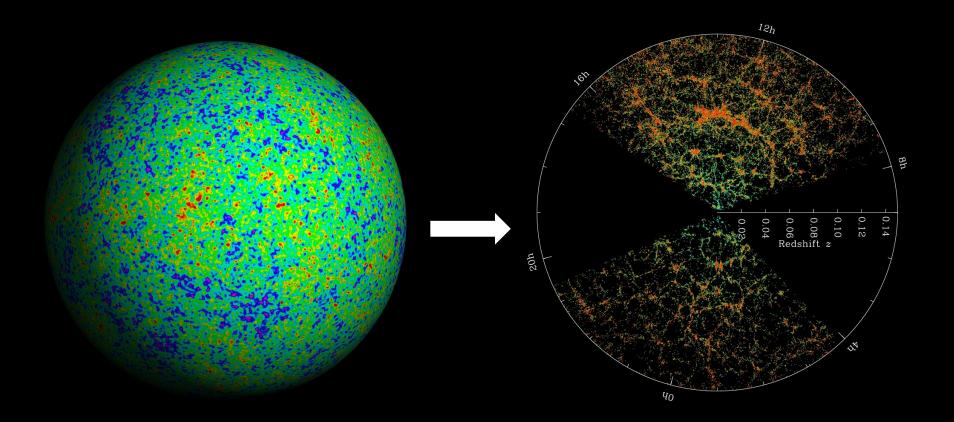


Large-Scale Structure Formation

Jia Liu (Princeton University) Dark Matter Summer School, July 16, 2018 University at Albany

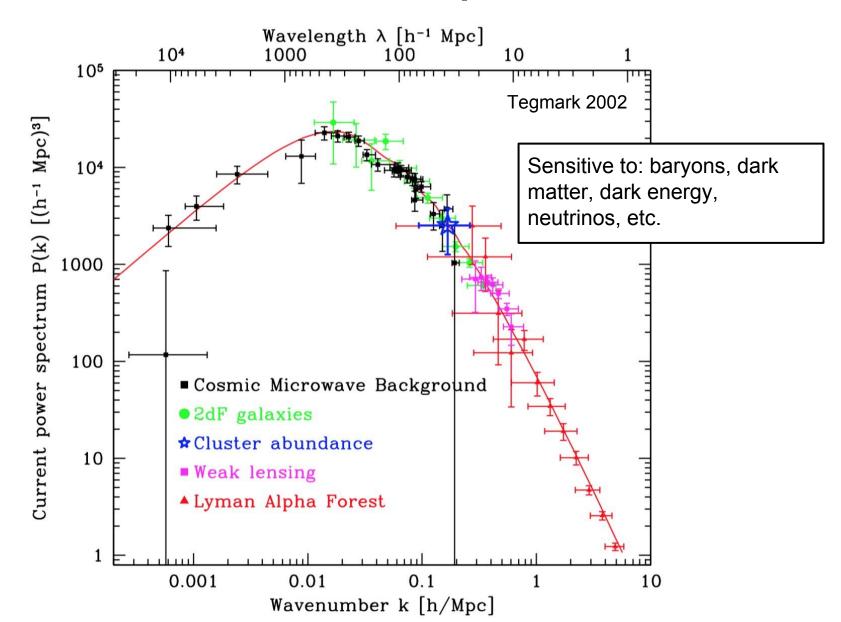
How Did This Happen?



Extremely Gaussian Field z=1100

Highly Nonlinear Structures z<1

The Matter Power Spectrum



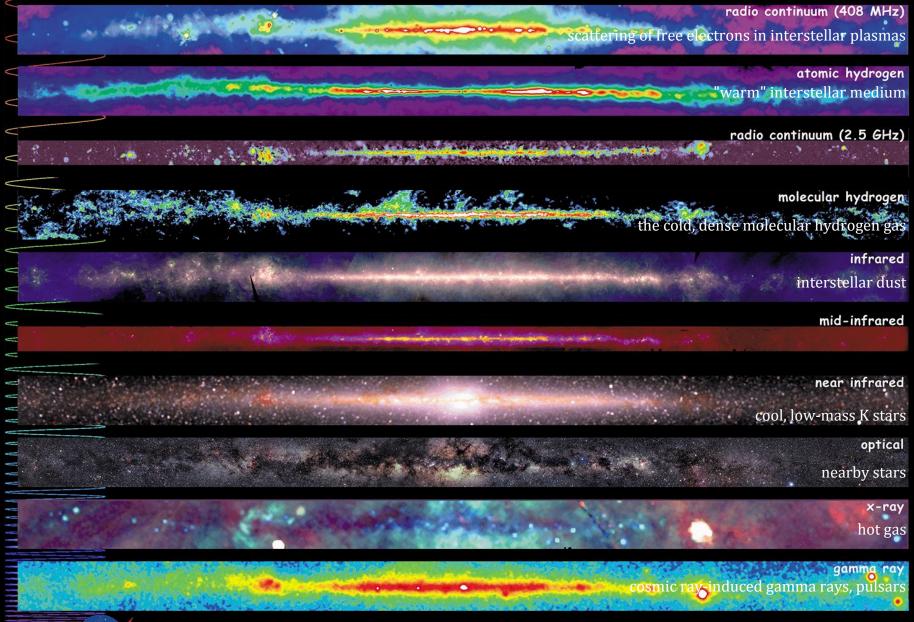
Plan

- 1. Cosmological Observations 10'
- 2. Growth of Structure 25'
- 3. Gaussian Random Field 5'
- 4. The Matter Power Spectrum 20'
- 5. Large Scale Structure Probes 10'

Don't be afraid of asking questions in class (and in life)!

- "I'm the only one who doesn't know this." You will be surprised how many people are just as puzzled..
- "I can't frame this question clearly and eloquently." Start practicing now!

- "Maybe she said it already when I dozed off just now..." While it doesn't hurt for others to hear one thing twice, you may not understand the rest of the class if you miss this point! Cosmological Observations



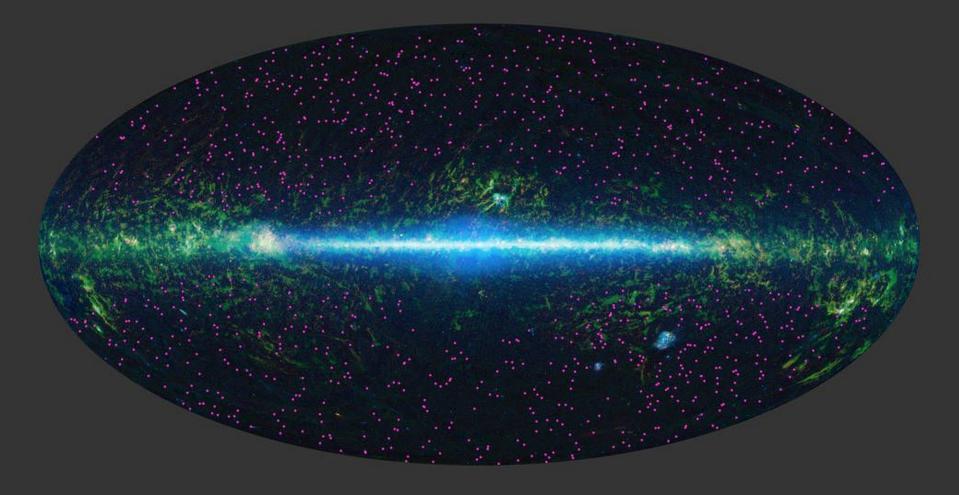
Multiwavelength Milky Way. Each wavelength gives us unique info. We can also apply the same technique to our Universe.

Cosmic Microwave Background Planck Satellite

z=1100, Last scattering surface 380,000 years after the Big Bang

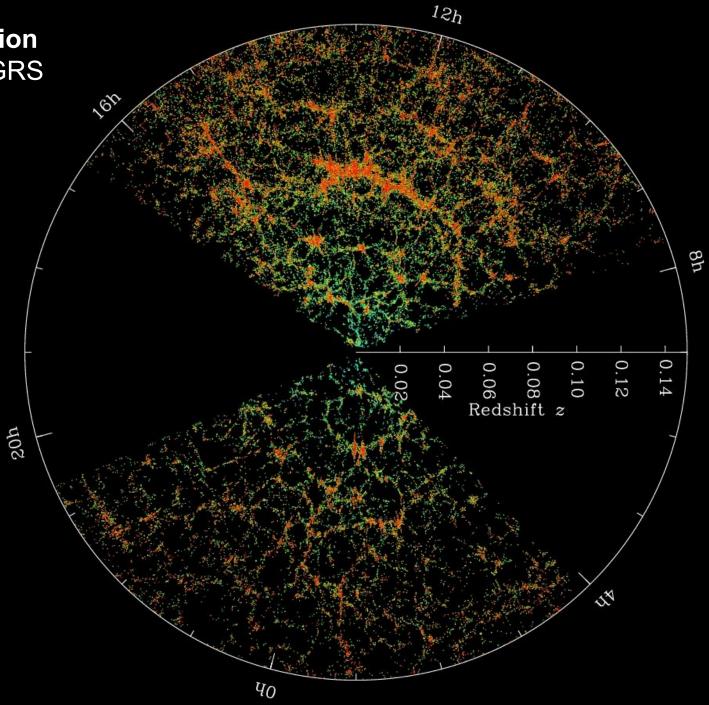
Infrared Wide-field Infrared Survey Explorer (WISE)

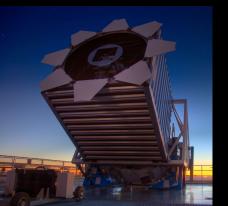
All Sky IR map of dusty/star forming galaxies *At 3.3, 4.7, 12, and 23 micrometers*



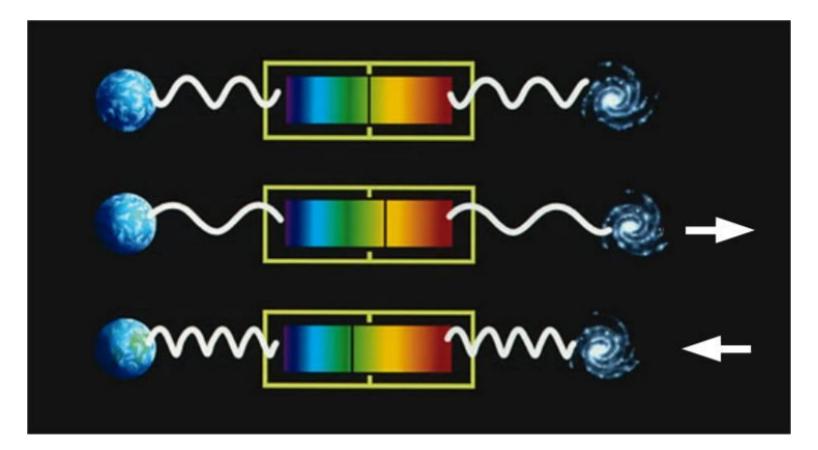
Optical Hubble Deep Field HST/NASA

Galaxy Distribution SDSS/CfA2/2dFGRS



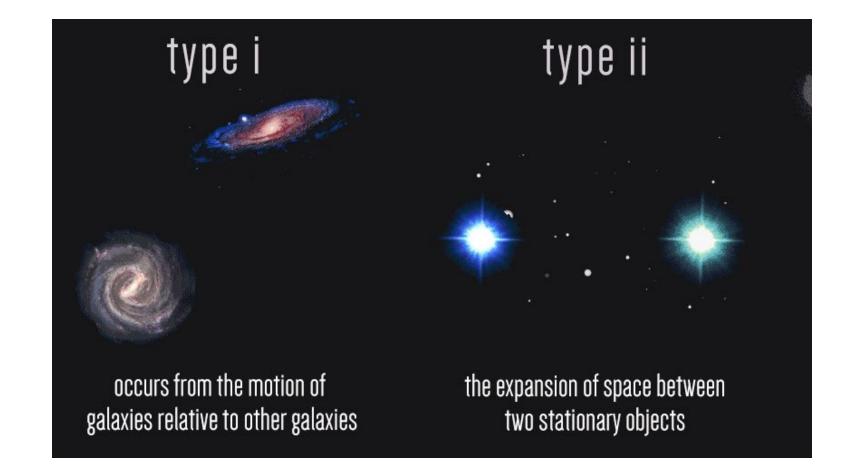


Redshift as Time and/or Distance



$$z = \frac{\Delta\lambda}{\lambda} = \sqrt{\frac{1+v/c}{1-v/c}} - 1$$

Redshift as Time and/or Distance



http://princetoninnovation.org/magazine/2015/12/09/redshift-universes-doppler-effect/

Redshift	v/c	Present Distance		Look-Back Time
		(Mpc)	(10 ⁶ light-years)	(millions of years)
0.000	0.000	0	0	0
0.010	0.010	43	139	139
0.025	0.025	107	347	343
0.050	0.049	212	691	674
0.100	0.095	419	1370	1300
0.200	0.180	820	2670	2440
0.250	0.220	1010	3300	2950
0.500	0.385	1910	6210	5080
0.750	0.508	2680	8750	6650
1.000	0.600	3350	10,900	7820
1.500	0.724	4450	14,500	9420
2.000	0.800	5300	17,300	10,400
3.000	0.882	6520	21,300	11,600
4.000	0.923	7370	24,000	12,200
5.000	0.946	8000	26,100	12,600
6.000	0.960	8490	27,700	12,800
7.000	0.969	8890	29,000	13,000
8.000	0.976	9220	30,100	13,100
9.000	0.980	9500	31,000	13,200
10.000	0.984	9740	31,800	13,300
50.000	0.999	12,400	40,400	13,700

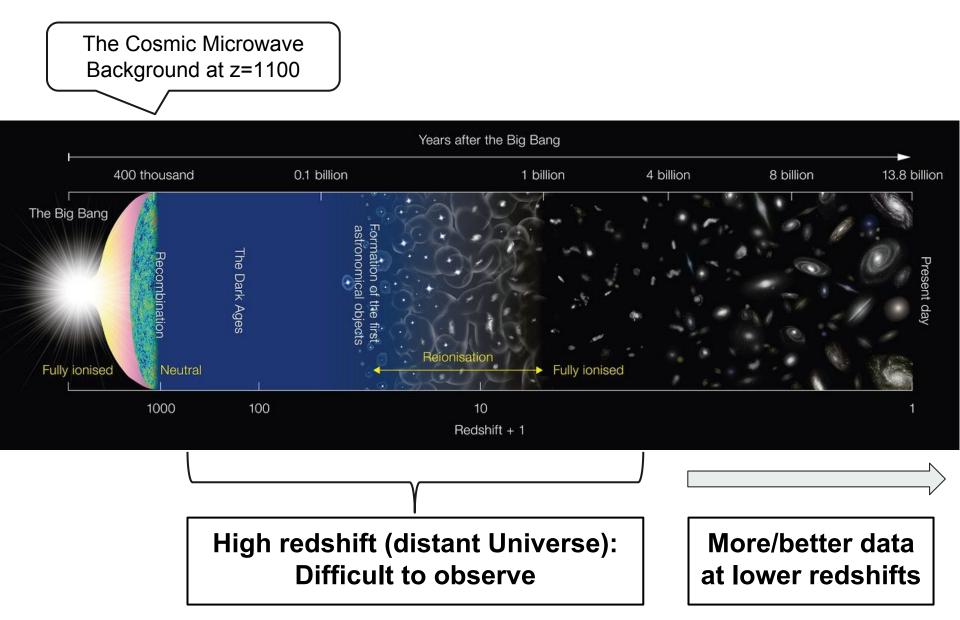
Distance units used in Cosmology:

Parsec (pc) = 3.26 years Typical distance between 2 stars

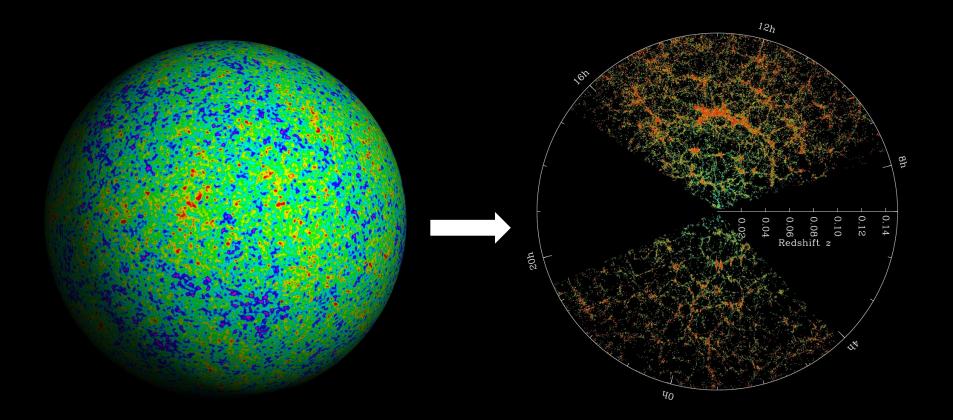
Megaparsec (Mpc) = 10⁶ pc Typical distance between 2 galaxies

Growth of Structure

Universe Timeline



How Did This Happen?

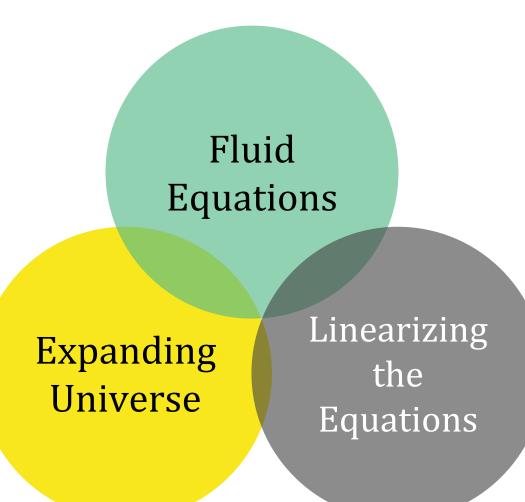


Extremely Gaussian Field

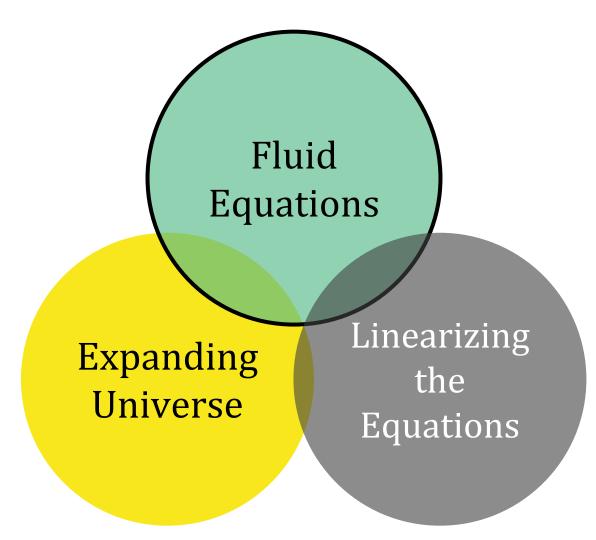
Highly Nonlinear Structures



Ingredients For Structure Growth



Ingredients For Structure Growth

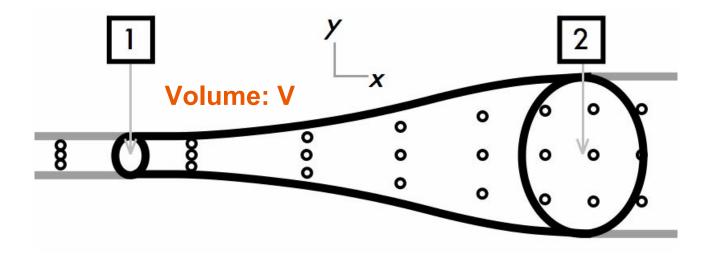


1. Continuity Equation (Mass Conservation)

Change in the density inside a fixed volume V

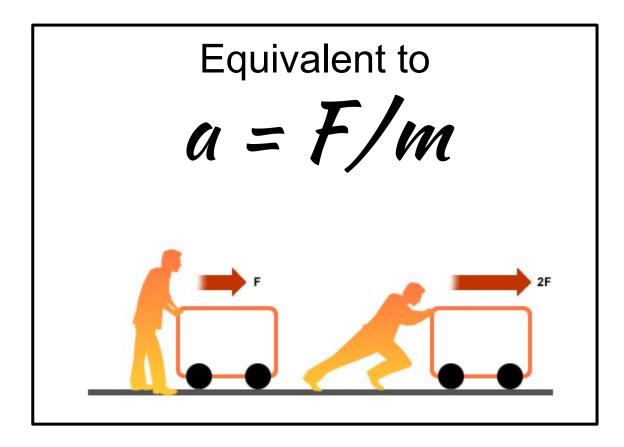
$$\partial_t
ho = - oldsymbol{
abla}_{oldsymbol{r}} \cdot (
ho oldsymbol{u})$$

Total mass flow in/out of the boundary



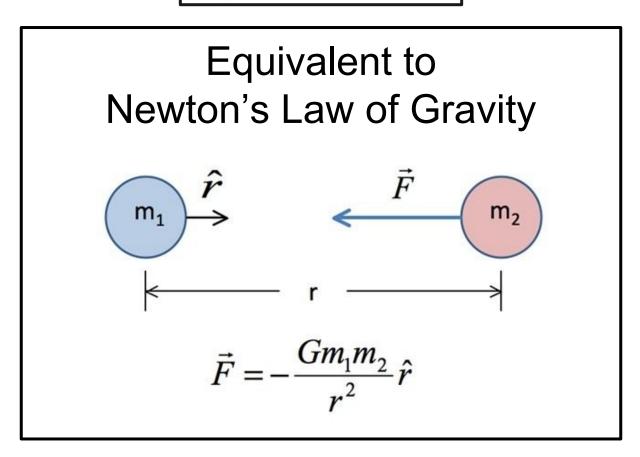
2. Euler Equation (Momentum Conservation)

$$\left(\partial_t + oldsymbol{u} \cdot oldsymbol{
abla}_r
ight)oldsymbol{u} = -rac{oldsymbol{
abla}_r P}{
ho} - oldsymbol{
abla}_r \Phi$$



3. Poisson Equation

$$abla_{m r}^2 \Phi = 4\pi G
ho$$



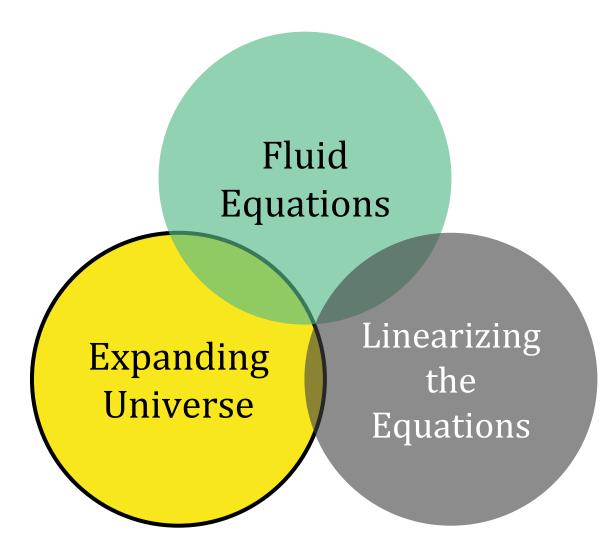
Fluid Equations

$$\begin{array}{l} \partial_t \rho = - \boldsymbol{\nabla}_r \cdot (\rho \boldsymbol{u}) & \text{Continuity Equation} \\ (\partial_t + \boldsymbol{u} \cdot \boldsymbol{\nabla}_r) \, \boldsymbol{u} = - \frac{\boldsymbol{\nabla}_r P}{\rho} - \boldsymbol{\nabla}_r \Phi & \text{Euler Equation} \\ \nabla_r^2 \Phi = 4\pi G \rho & \text{Poisson Equation} \end{array}$$

 ϱ : density Φ: grav. potential P: pressure u: velocity $\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k} \quad \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \quad \partial_t = \partial/\partial t$

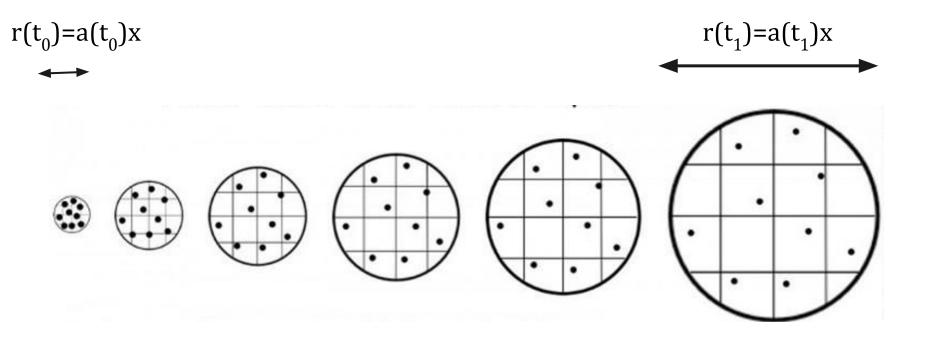
Detailed derivation see Daniel Baumann's online notes: http://www.damtp.cam.ac.uk/user/db275/Cosmology.pdf

Ingredients For Structure Growth



Expanding Universe

r: physical, *x*: comoving



r(t)=a(t)x: the comoving coordinate x of all galaxies remain the same, while physical distances r are scaled by the scale factor a.

(governs the expansion of the universe)

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}$$

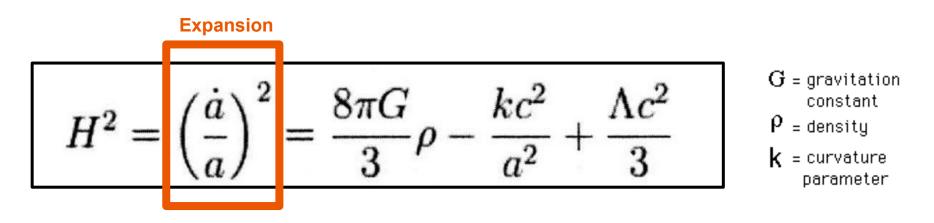
curvature parameter

Sometimes expressed as:

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{ ext{DE}} a^{-3(1+w)}} \qquad
ho_c = rac{3H^2}{8\pi G} \quad \Omega = rac{
ho}{
ho_c}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

(governs the expansion of the universe)

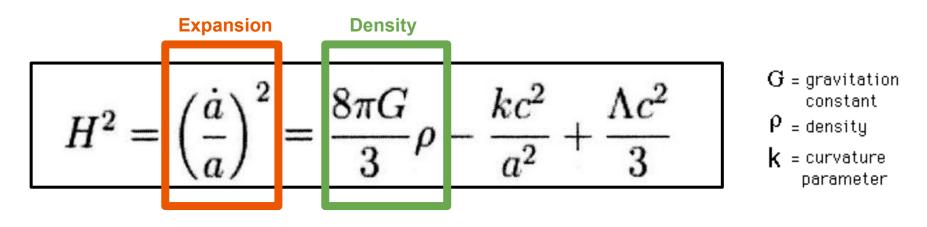


Sometimes expressed as:

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}} \qquad
ho_c = rac{3H^2}{8\pi G} \quad \Omega = rac{
ho}{
ho_c}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

(governs the expansion of the universe)

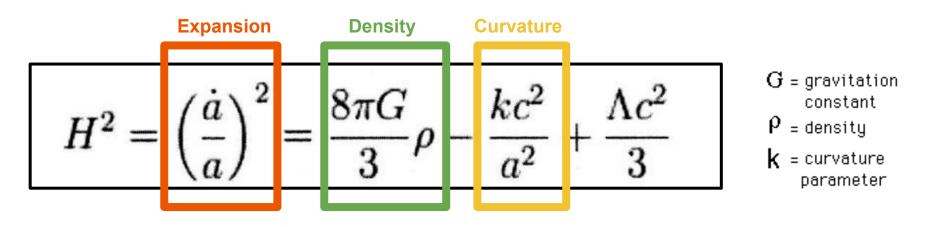


Sometimes expressed as:

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}} \qquad
ho_c = rac{3H^2}{8\pi G} \quad \Omega = rac{
ho}{
ho_c}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

(governs the expansion of the universe)

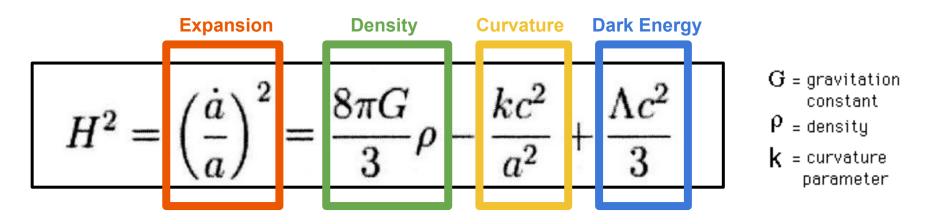


Sometimes expressed as:

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}} \qquad
ho_c = rac{3H^2}{8\pi G} \quad \Omega = rac{
ho}{
ho_c}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

(governs the expansion of the universe)

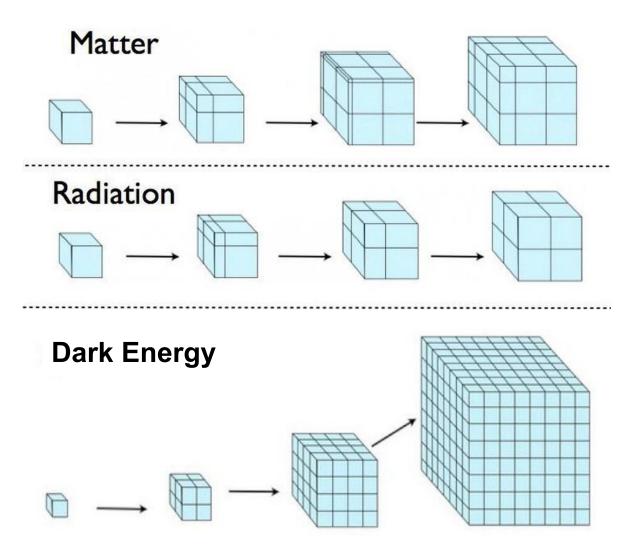


Sometimes expressed as:

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}} \hspace{1cm}
ho_c = rac{3H^2}{8\pi G} \hspace{1cm} \Omega = rac{
ho}{
ho_c}$$

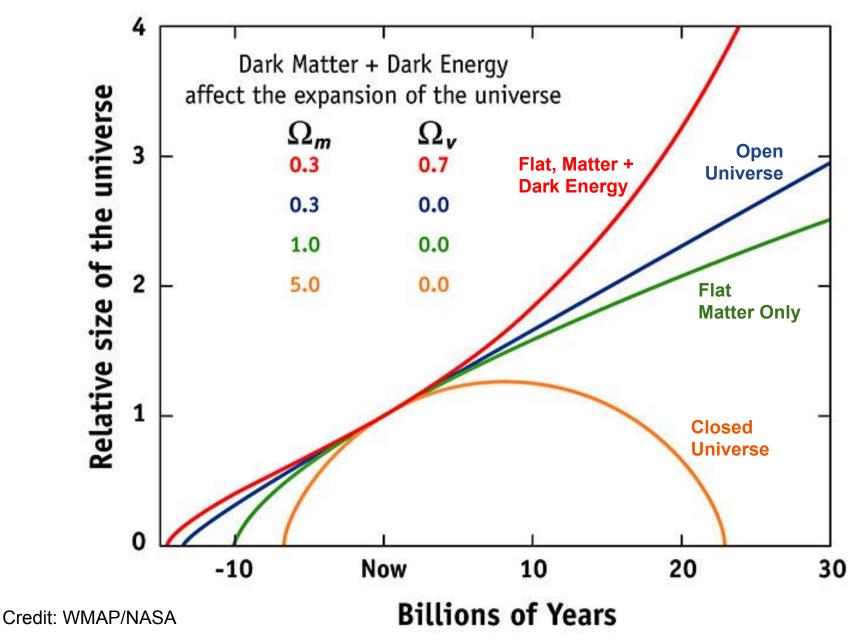
$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Background (scale factor a) Expansion

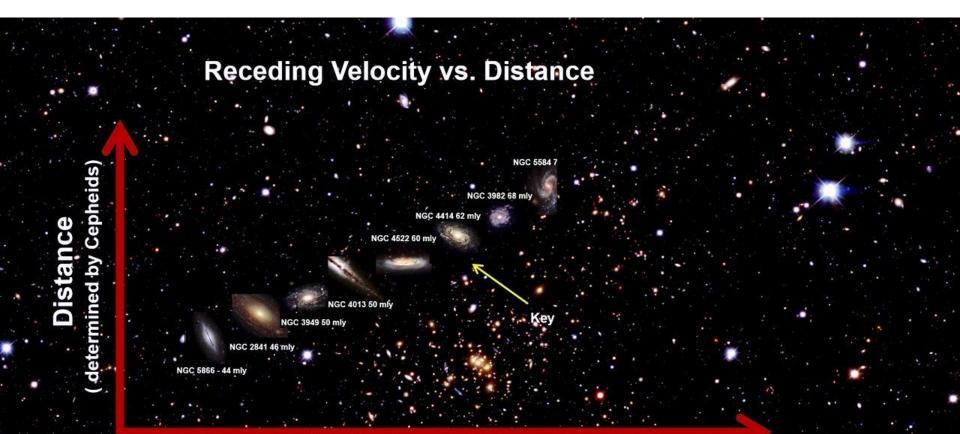


An illustration of how spacetime expands when it's dominated by Matter, Radiation or Dark Energy. All three of these solutions are derivable from the Friedmann equations. (Credit: E. Siegel)

EXPANSION OF THE UNIVERSE

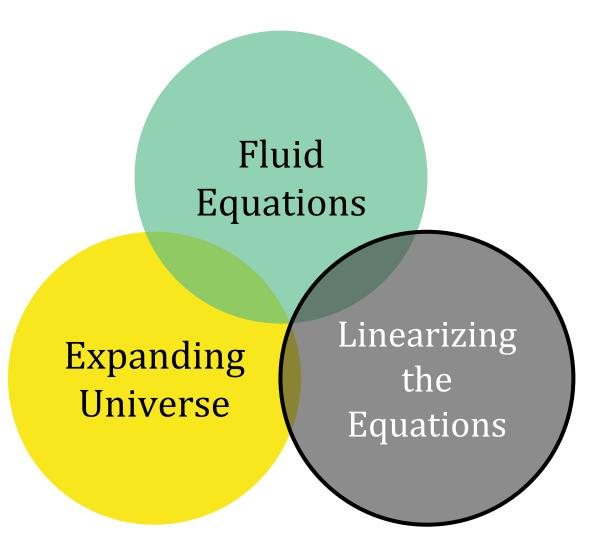


Measuring the Hubble Parameter H: Distance vs Velocity (Redshift)



Velocity (determined by Red Shift)

Ingredients For Structure Growth



Linearized Fluid Equations

(replace $x \to x_0^+ \delta x$ and keep only the first order quantities)

1. Continuity Equation (Mass Conservation)
$$\partial_t \rho = - \boldsymbol{\nabla}_r \cdot (\rho \boldsymbol{u}) \qquad \implies \dot{\delta} = -\frac{1}{a} \boldsymbol{\nabla} \cdot \boldsymbol{v}$$

2. Euler Equation (Momentum Conservation)

$$(\partial_t + \boldsymbol{u} \cdot \boldsymbol{\nabla}_r) \, \boldsymbol{u} = -\frac{\boldsymbol{\nabla}_r P}{\rho} - \boldsymbol{\nabla}_r \Phi \implies \dot{\boldsymbol{v}} + H \boldsymbol{v} = -\frac{1}{a\bar{\rho}} \boldsymbol{\nabla} \delta P - \frac{1}{a} \boldsymbol{\nabla} \delta \Phi$$

3. Poisson Equation $\nabla_r^2 \Phi = 4\pi G \rho$ $\longrightarrow \nabla^2 \delta \Phi = 4\pi G a^2 \bar{\rho} \delta$

Structure Evolution (Linear Theory)

$$\ddot{\delta} + 2H\dot{\delta} - \frac{c_s^2}{a^2}\nabla^2\delta = 4\pi G\bar{\rho}\delta$$

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}}$$

* Example on black board: matter dominated era

Structure Evolution (Linear Theory)

$$\ddot{\delta} + 2H\dot{\delta} - \frac{c_s^2}{a^2}\nabla^2\delta = 4\pi G\bar{\rho}\delta$$

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}}$$

Radiation dominated era: $\delta \sim \ln a$

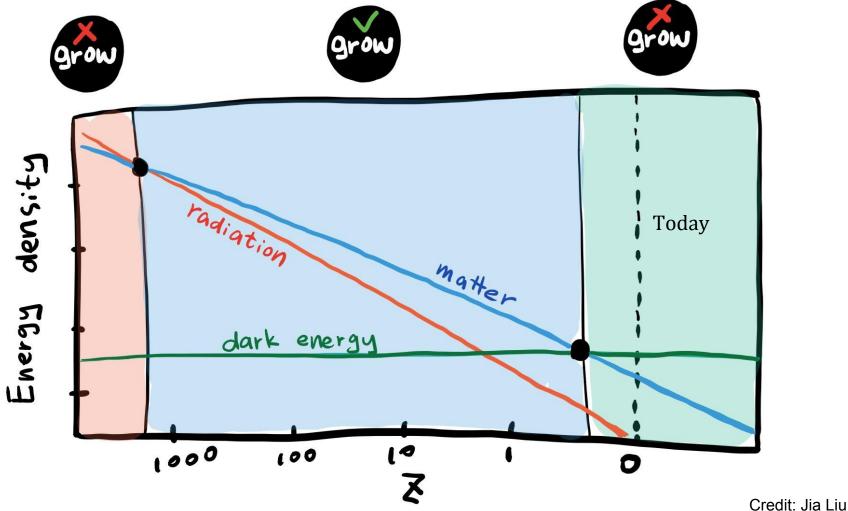
Matter dominated era: $\delta \sim a$

Dark energy dominated era:

Ju

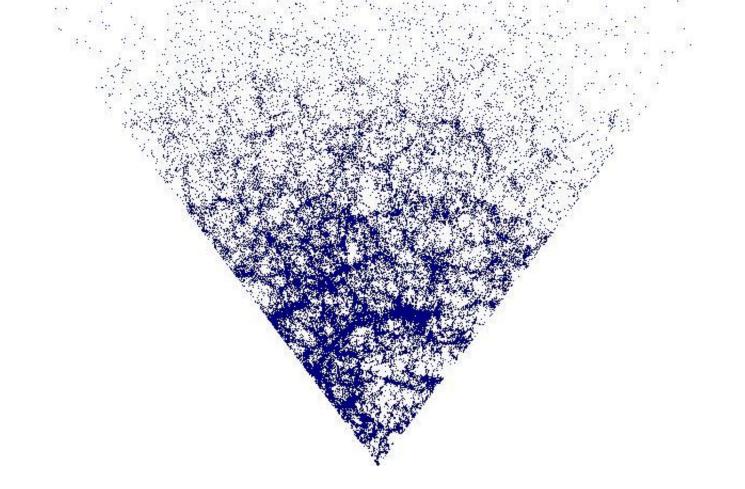
 δ ~ constant

Key Result: Structure Grows Mainly in the Matter Dominated Epoch



Inspired by: Frieman, Turner, Huterer, 2008

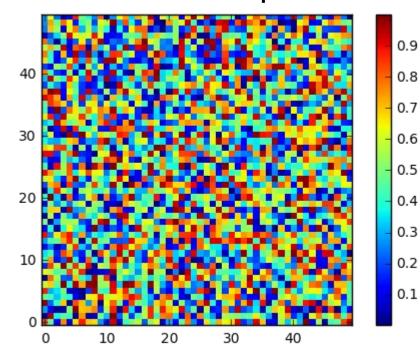
Gaussian Random Field

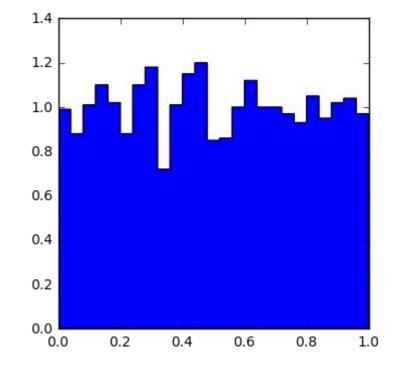


What do we do with all the beautiful cosmology data

A Random Field with Flat Probability

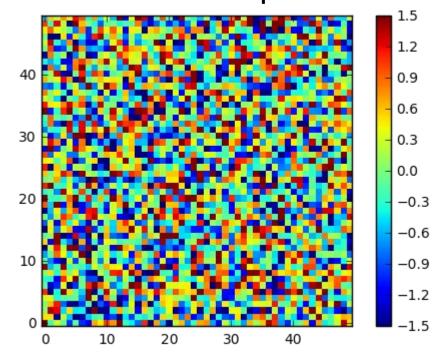
Random Map

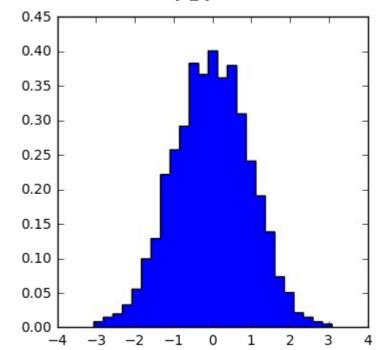




A Random Field with Gaussian Probability

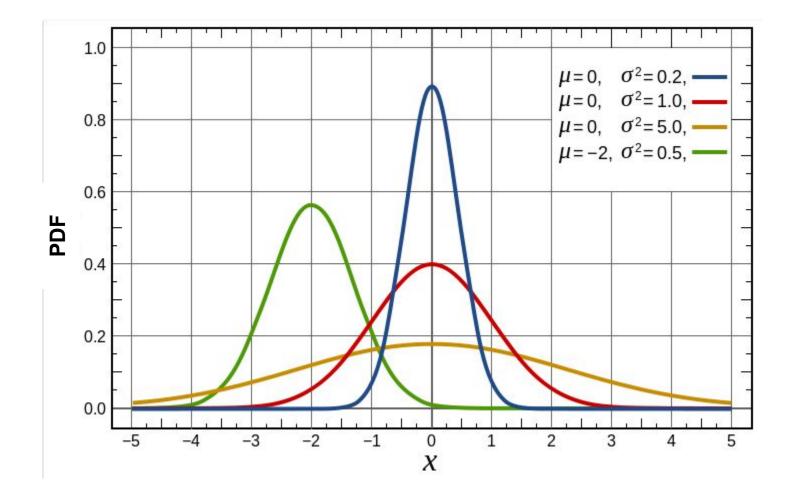
Random Map

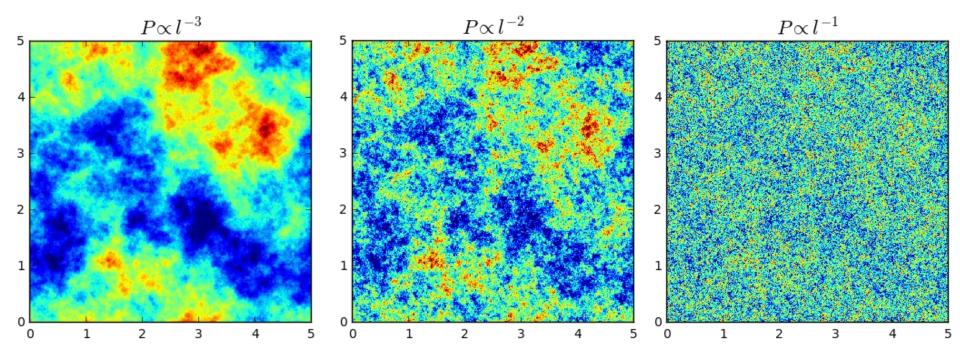


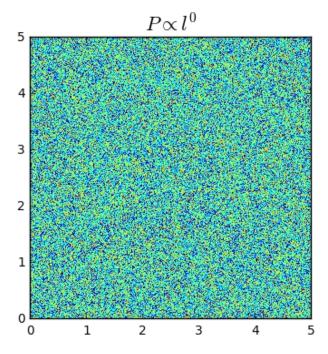


PDF

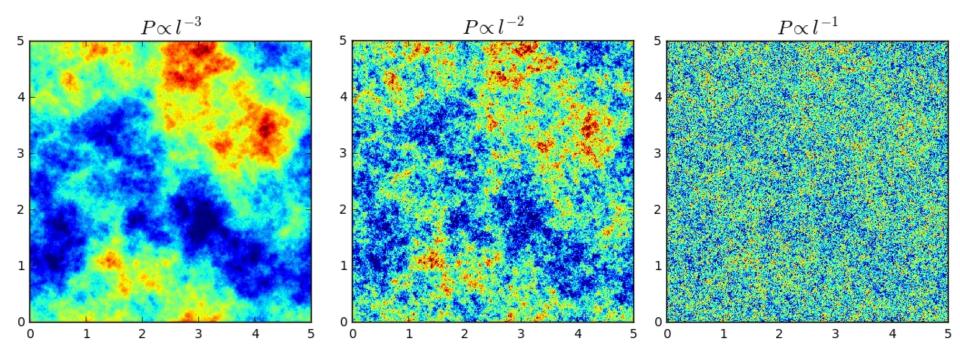
A Gaussian distribution is fully described by 2 numbers: Mean, Variance

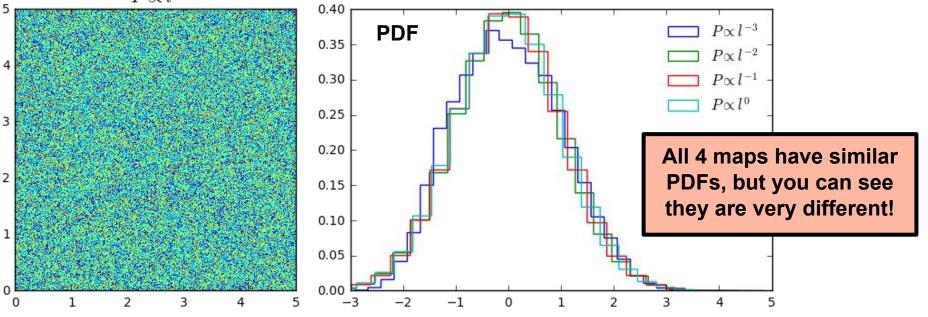


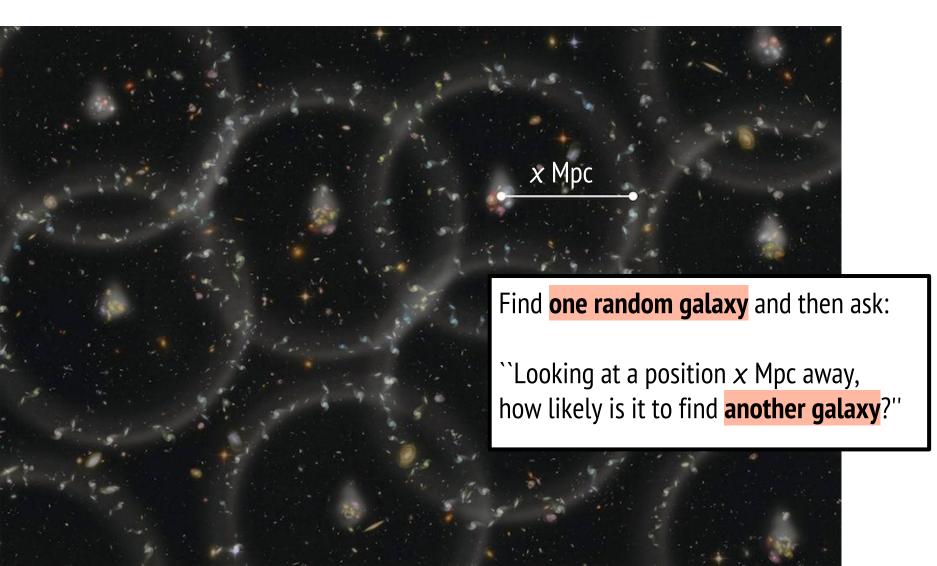




What is the distribution of these 4 maps? (same color scale)







Two-point function measured the **lumpiness** at a certain scale:

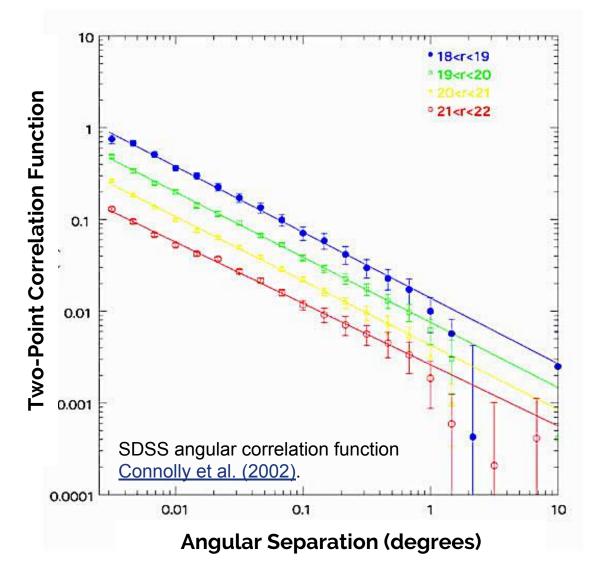
Imagine randomly dropping rulers of various length. Then record the fraction of trails where you find galaxies at both end of the ruler.

Assuming ISOTROPY (i.e. ξ depends on distance r, but not direction).

$$\xi(r) = \frac{\langle \left[\rho(\mathbf{x} + \mathbf{r}) - \langle \rho \rangle \right] \left[\rho(\mathbf{x}) - \langle \rho \rangle \right] \rangle_{\mathbf{x}}}{\langle \rho \rangle^2} = \langle \, \delta(\mathbf{x} + \mathbf{r}) \, \delta(\mathbf{x}) \, \rangle_{\mathbf{x}}$$

To a good approximation, $\xi(\mathbf{r})$ can be described by a power law, with $\gamma \sim -1.8$ and r_0 depends on the specific object.

$$\xi(r) = \left(\frac{r}{r_0}\right)^{\gamma}$$



* Sample python code to compute two-point function

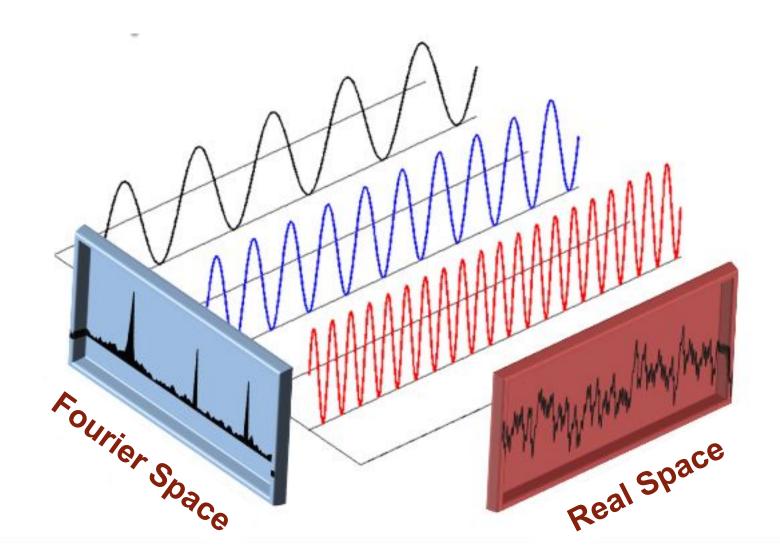
Power Spectrum

(Fourier Transformation of the Two-Point Correlation Function)

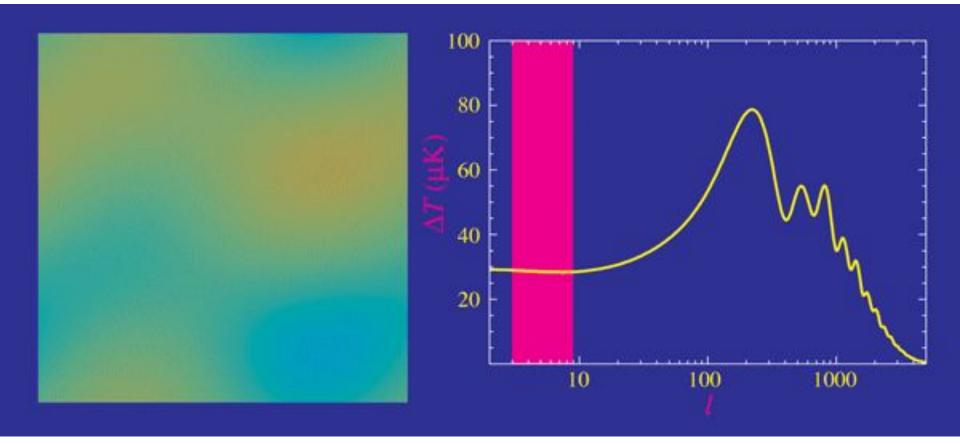
 $P(k) = \int \xi(r) e^{-i\vec{k}\vec{r}} d^3\vec{r}$

Each Fourier k mode evolves independently

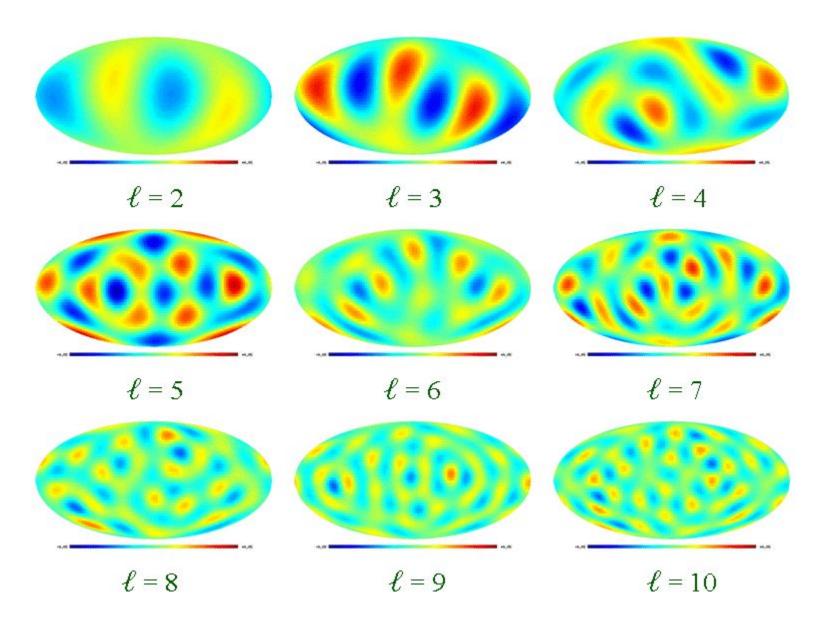
Power Spectrum



Example: Power Spectrum of The Cosmic Microwave Background

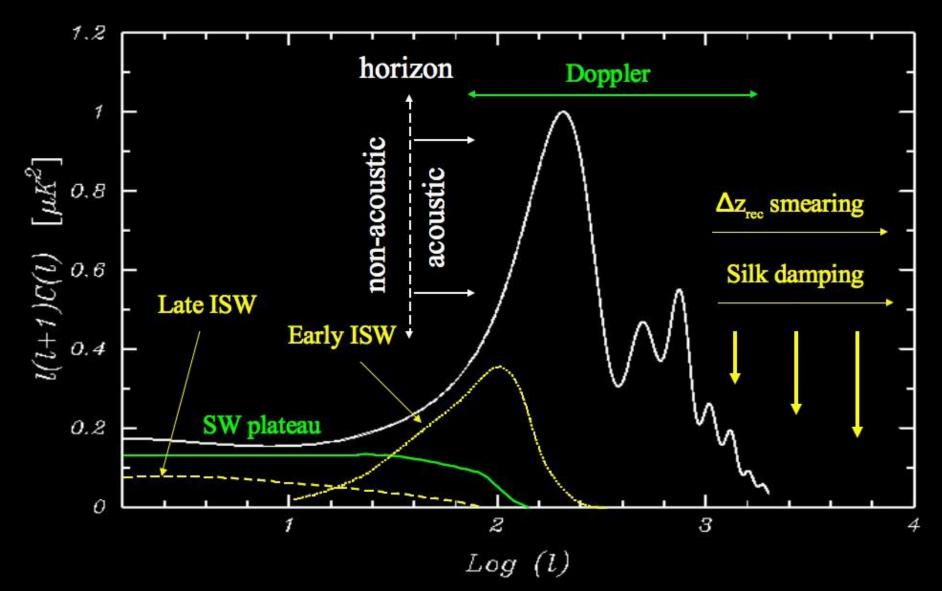


Wayne Hu's CMB tutorial



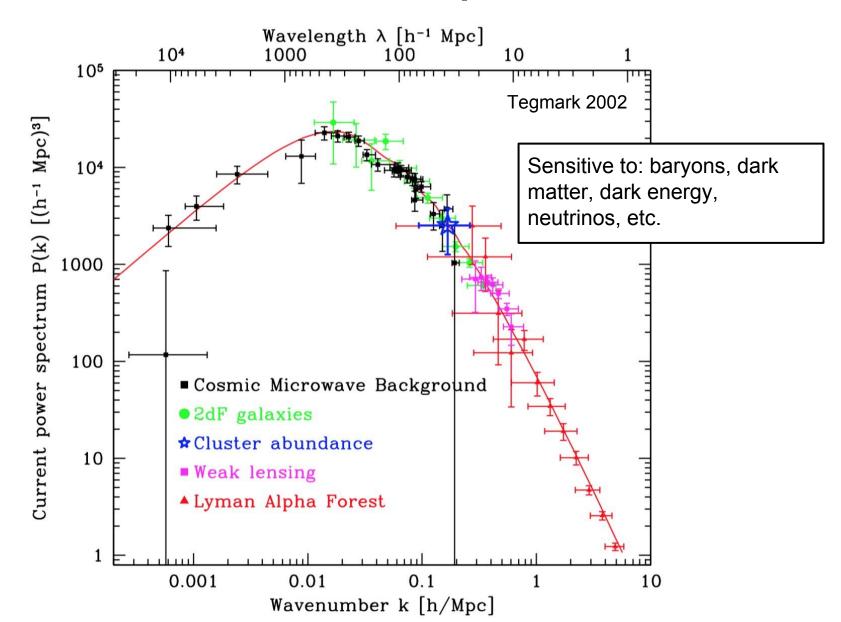
WMAP 3-year data filtered at various multipoles. Chiang Lung-Yih

Fourier Space: Physics More Transparent (see lecture by Mike Zemcov!)



The Matter Power Spectrum

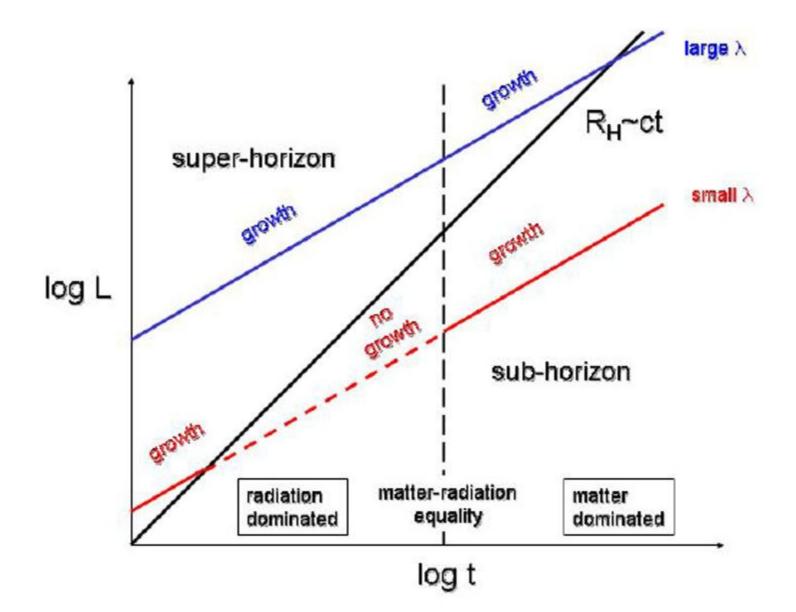
The Matter Power Spectrum

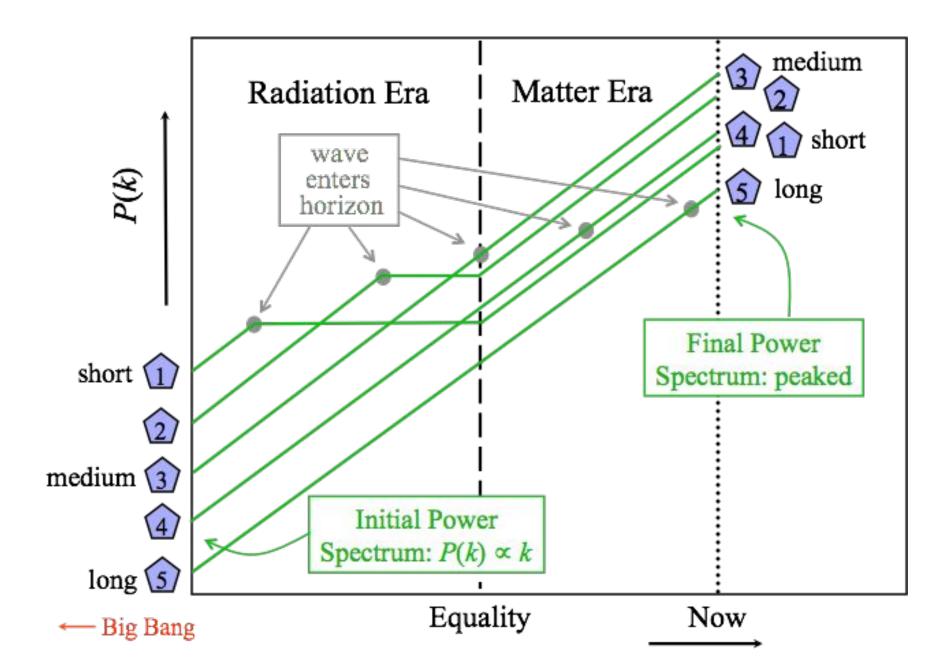


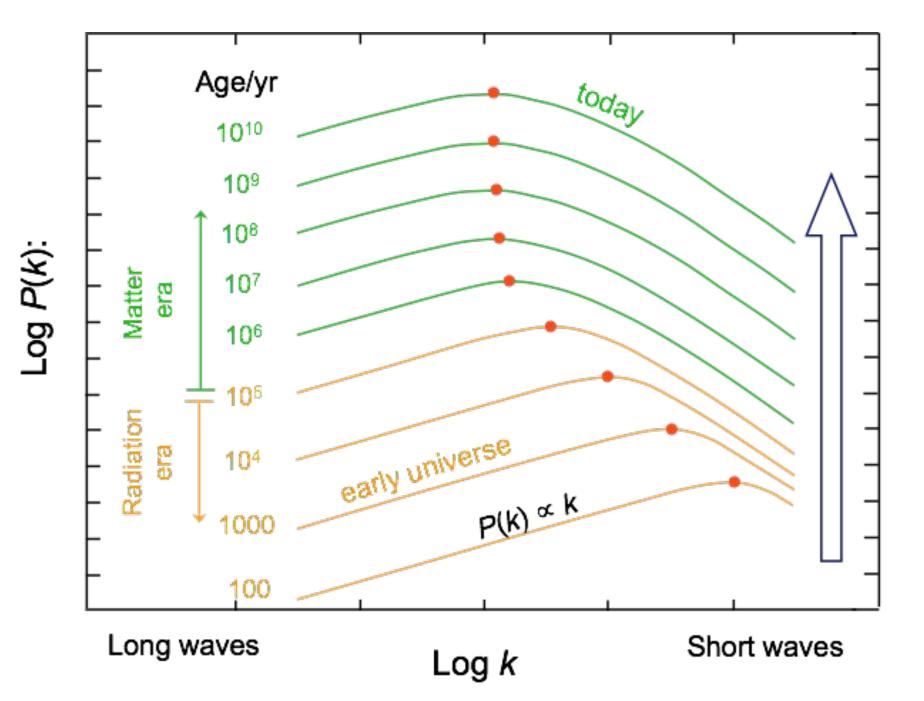
Evolution of P(k)

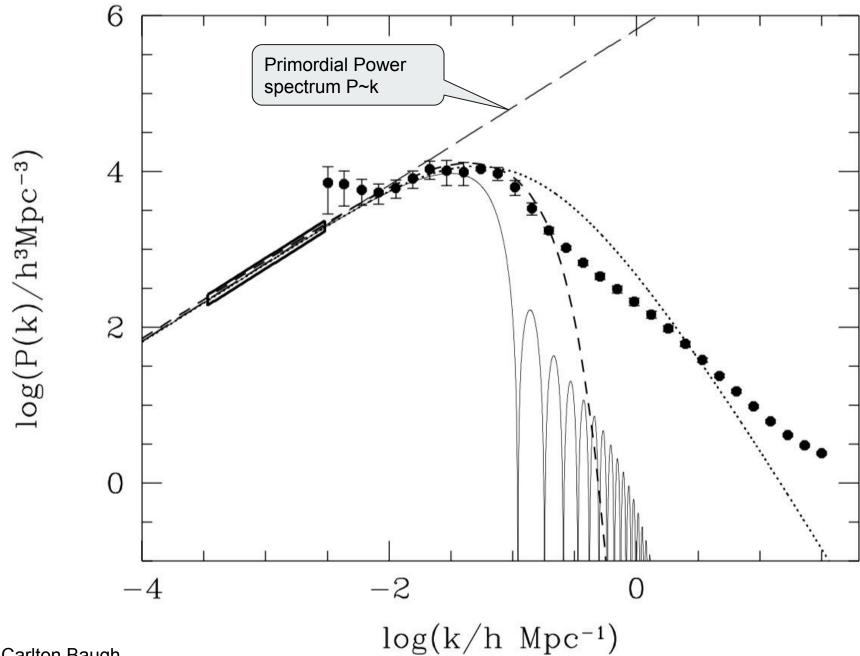
	Radiation Era	Matter Era
Super-horizon	$\Box \sim a^2 \sim t$	□ ~ a ~ t ^{2/3}
Sub-horizon	🗆 ~ In a (frozen)	\Box ~ a ~ t ^{2/3}

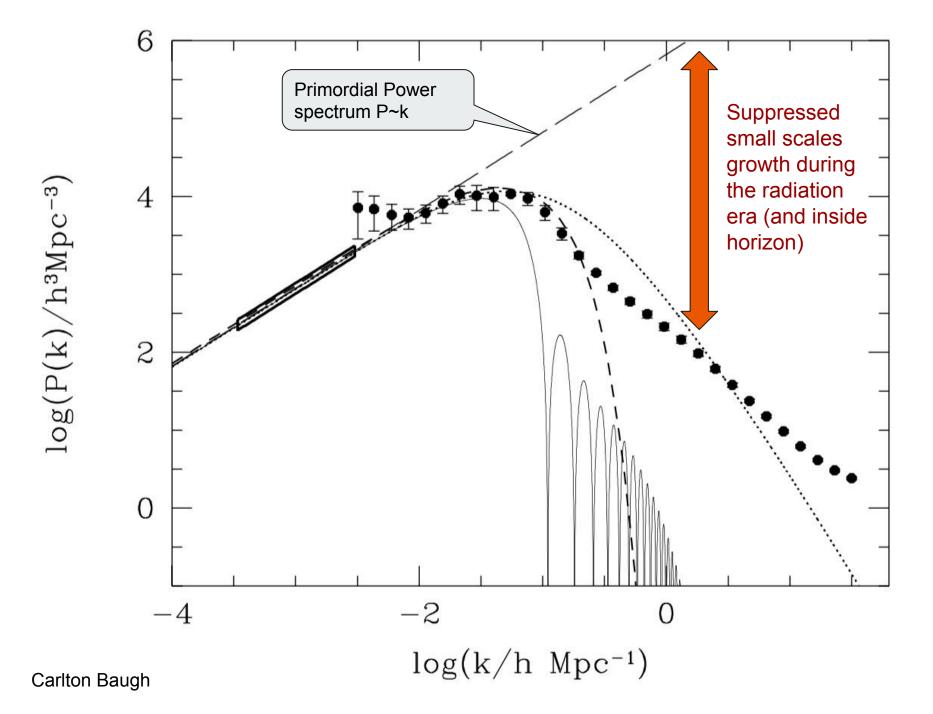
Evolution of P(k)

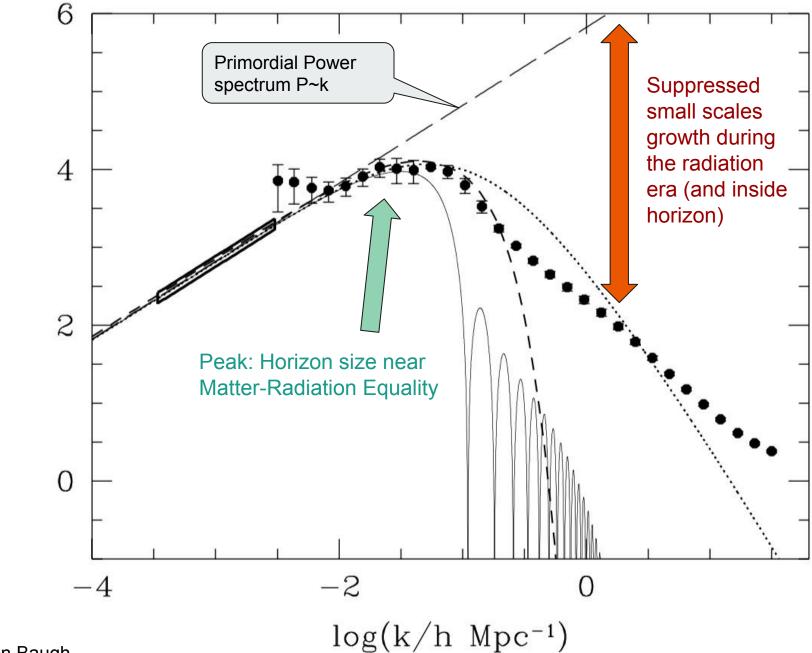




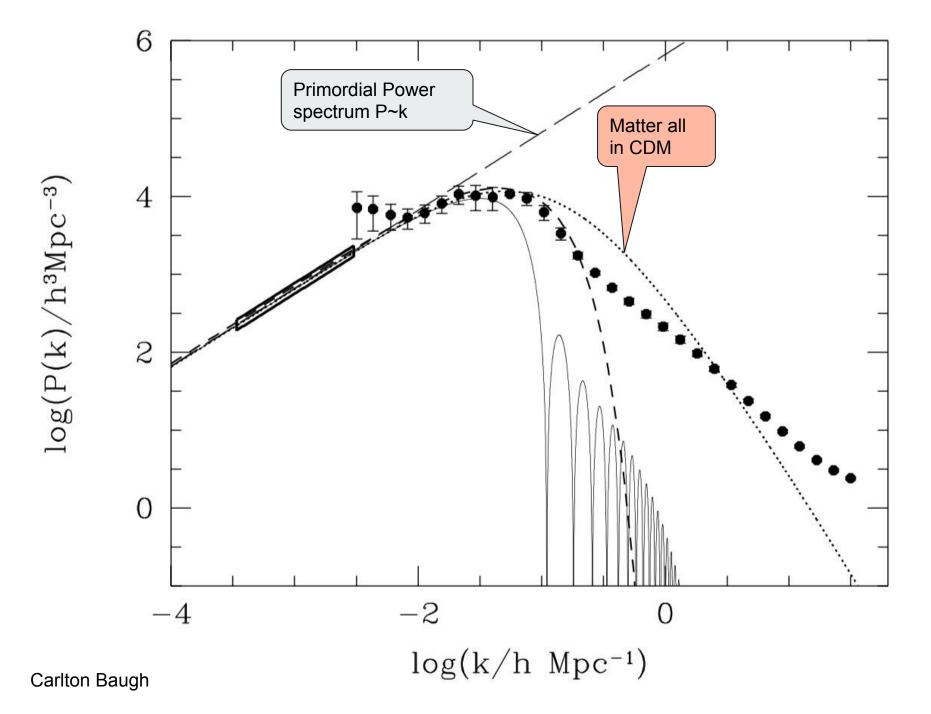


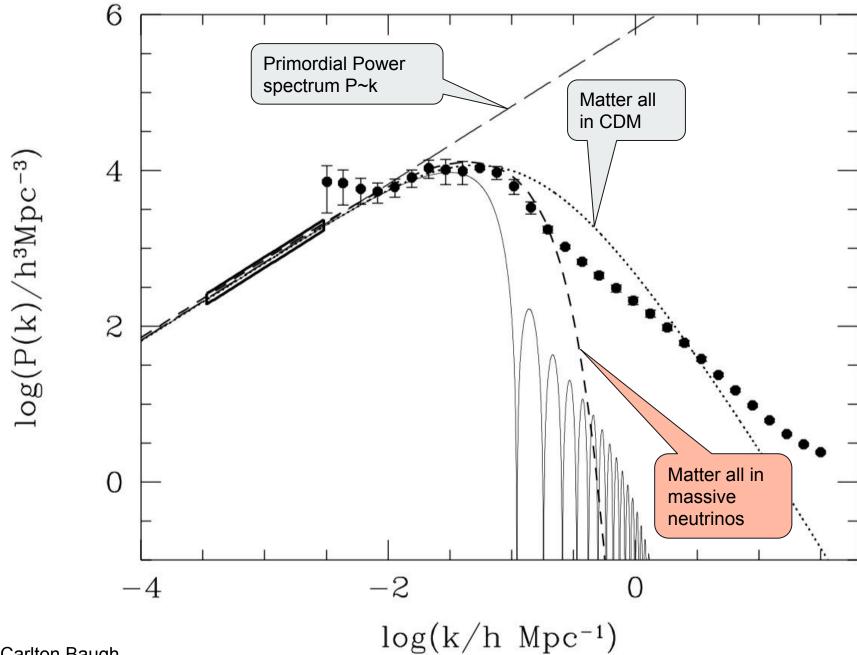


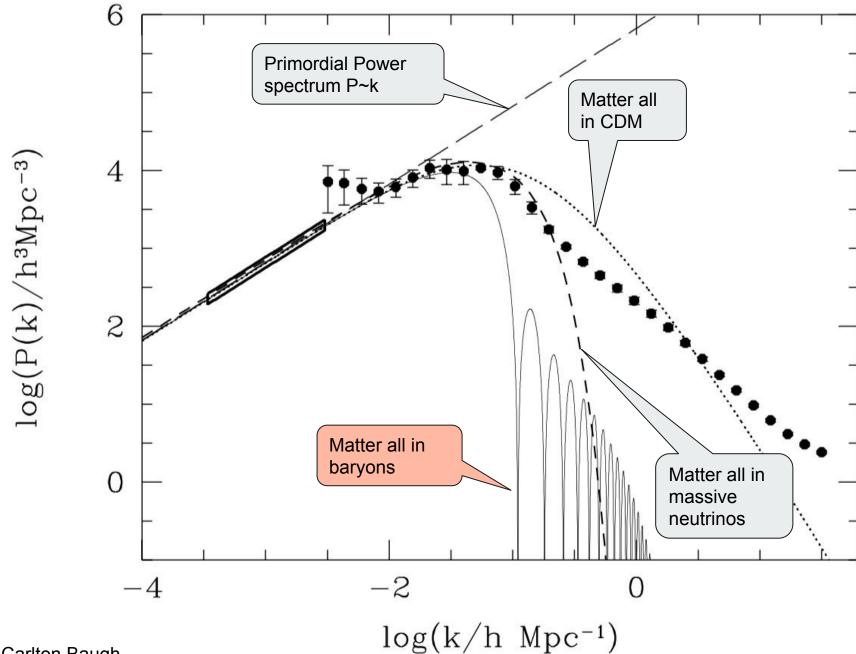


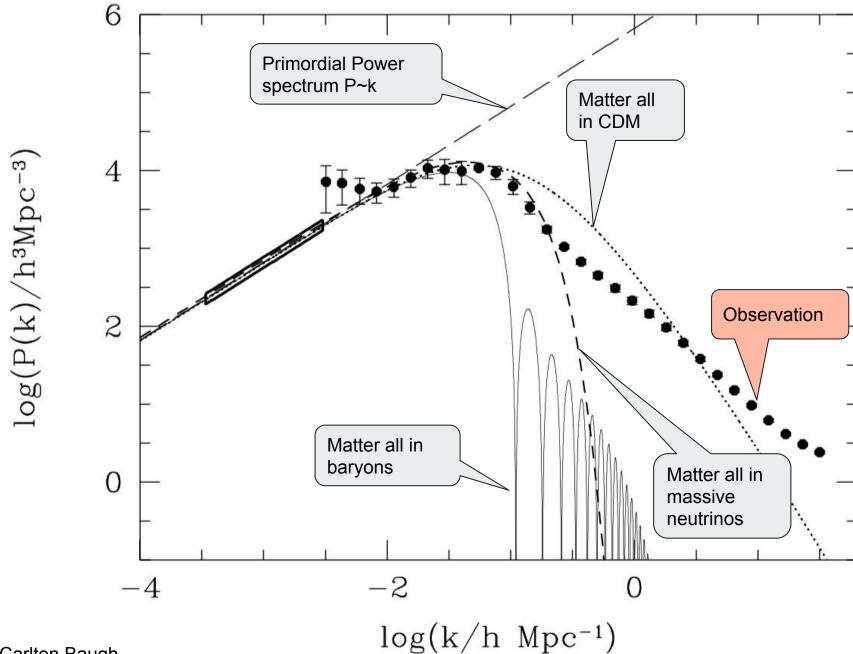


log(P(k)/h³Mpc⁻³)



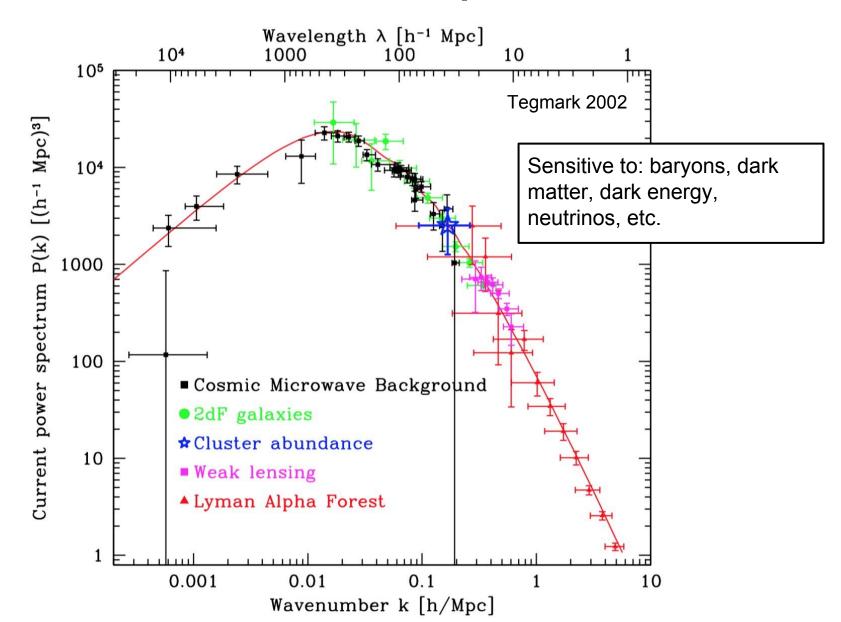






6 **Primordial Power** spectrum P~k Suppressed Matter all small scales in CDM growth during log(P(k)/h³Mpc⁻³) the radiation 4 era (and inside horizon) Observation 2 Peak: Horizon size near Matter-Radiation Equality Matter all in baryons Matter all in 0 massive neutrinos $^{-2}$ -4log(k/h Mpc⁻¹)

The Matter Power Spectrum



Matter Power Spectrum

So far we have only discussed the **linear** growth of structure. At late times, structure growth **nonlinearly**, numerical simulations are needed to calibrate the matter power spectrum.

Popular tools including:

- Camb: <u>http://camb.info/</u>
- Class: <u>http://class-code.net/</u>
- Nicaea: <u>http://www.cosmostat.org/software/nicaea</u>

Large-Scale Structure Probes

Two Types of LSS Probes

GEOMETRY: H(z)

Supernova

Baryon Acoustic Oscillations

Strong Lensing

- - -

GROWTH: δ (z)

Weak Lensing

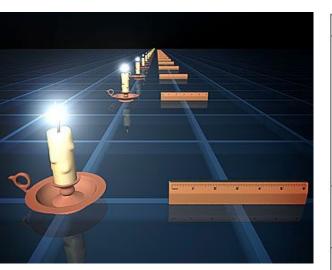
Clusters

Redshift Space Distortion

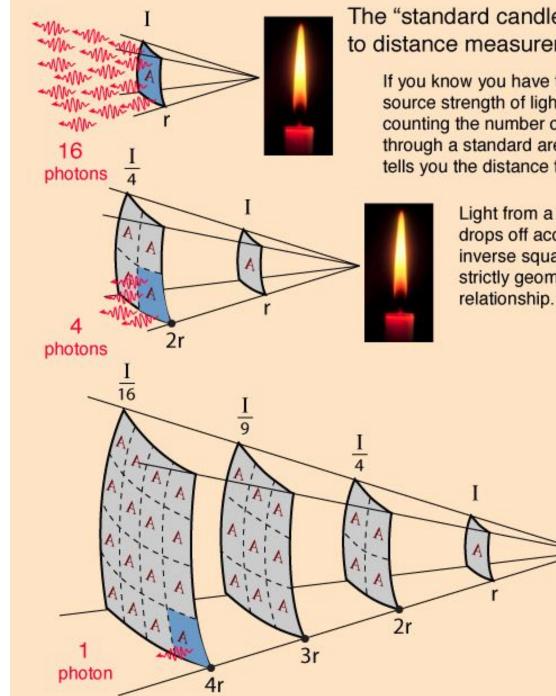
. . .

LSS Probes: GEOMETRY

$$H(a) = H_0 \sqrt{\Omega_k a^{-2} + \Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_{
m DE} a^{-3(1+w)}}$$



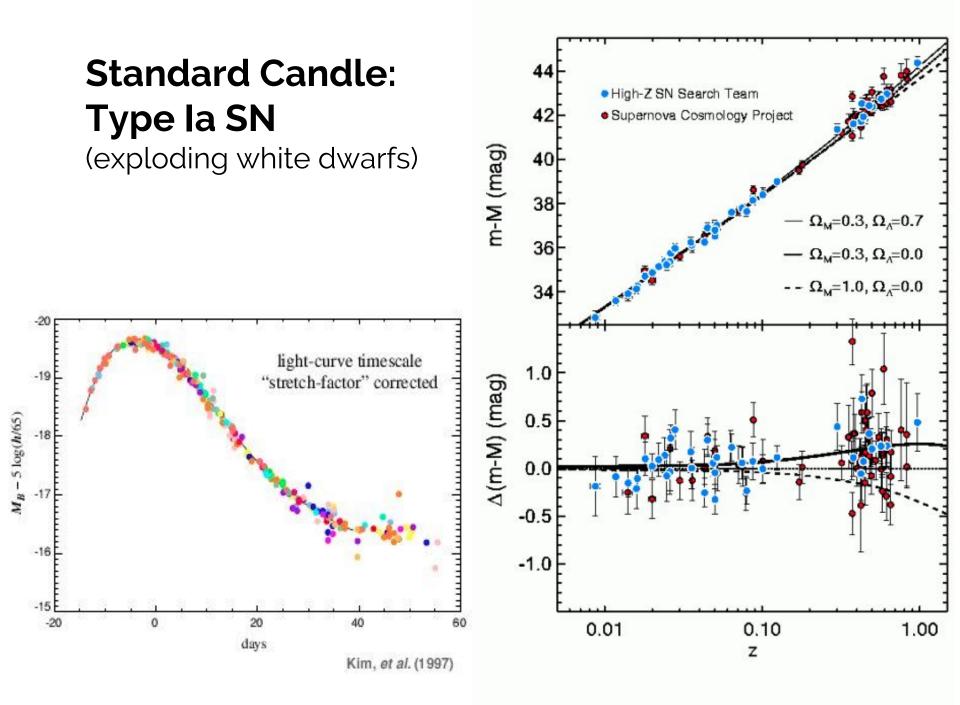
measurable	Definition	
proper distance	$D(z) = \int_{0}^{z} \frac{dz'}{H(z')} = \begin{cases} k ^{-1/2} \sin^{-1} \left[k ^{1/2} r(z) \right] \\ r(z) \\ \left[k ^{-1/2} \sinh^{-1} \left[k ^{1/2} r(z) \right] \end{cases}$	k > 0 $k = 0$ $k < 0$
luminosity distance (Standard Candle)	$d_L(z) = r(z)(1+z)$	
angular diameter distance (Standard Ruler)	$d_A(z) = r(z)/(1+z)$	
volume element	$dV = \frac{r^2(z)}{\sqrt{1 - kr^2(z)}} dr d\Omega$	



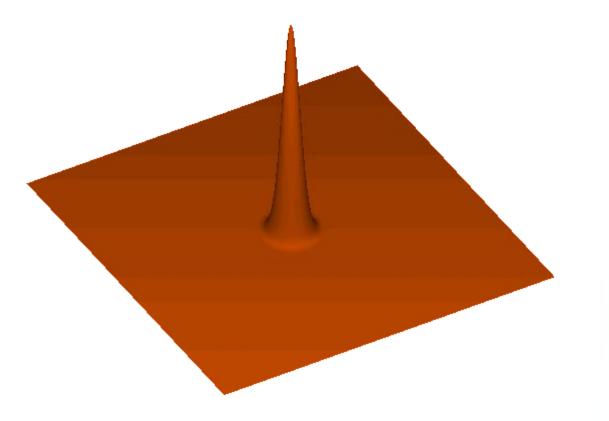
The "standard candle" approach to distance measurement.

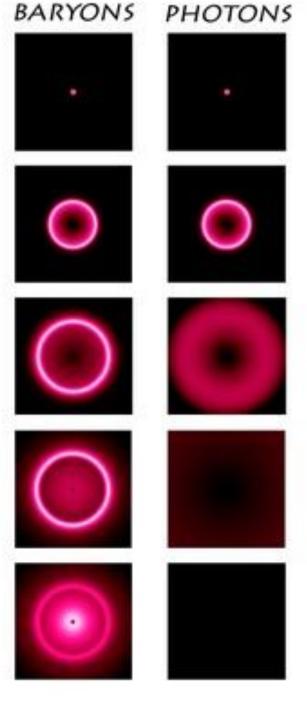
> If you know you have the same source strength of light, then counting the number of photons through a standard area detector tells you the distance to the source.

> > Light from a point source drops off according to the inverse square law, a strictly geometrical relationship.



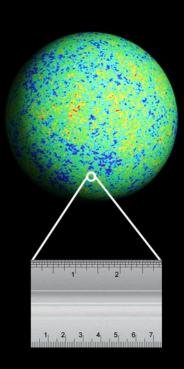
Standard Ruler: Baryon Acoustic Oscillations

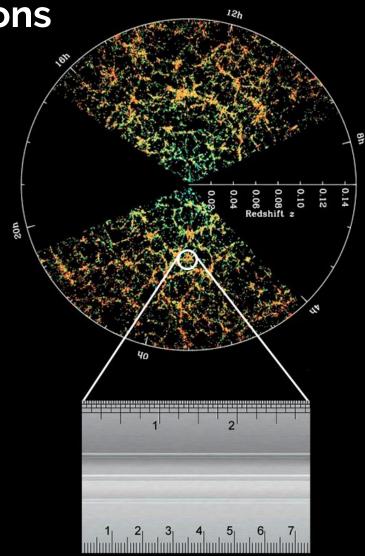


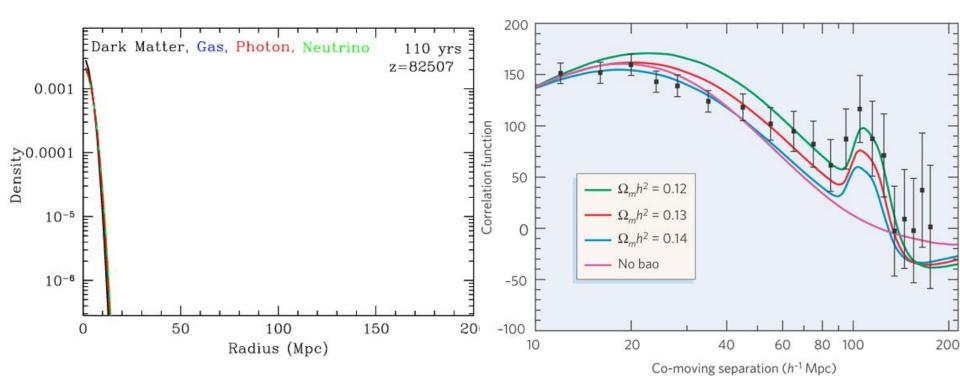


Martin White

Standard Ruler: Baryon Acoustic Oscillations







Eisenstein & Bennett

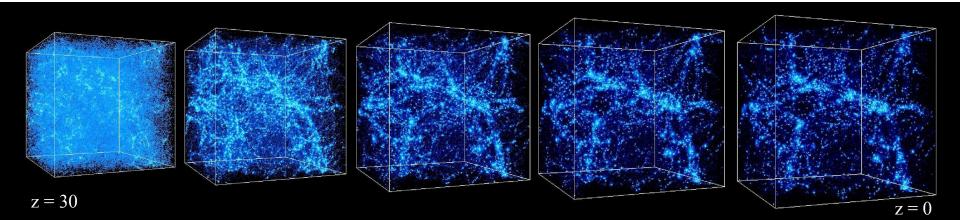
LSS Probes: GROWTH

Density fluctuation at a certain epoch is the result of competition between matter and dark energy.

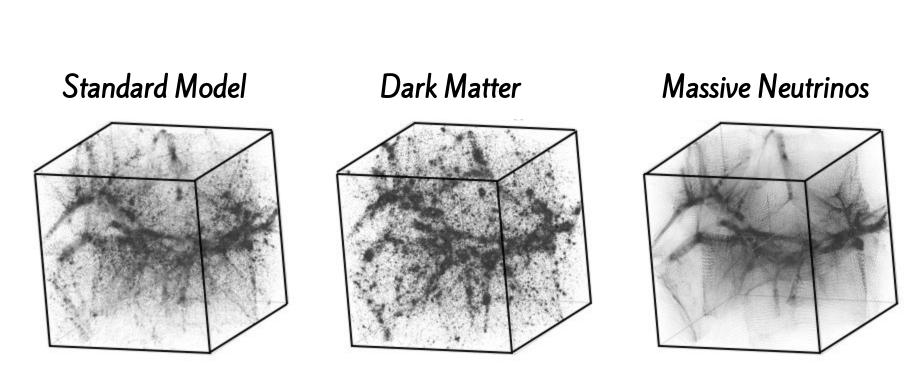
Gravity/mass: pulls matter together \rightarrow dense regions grow denser.

Dark energy: pushes matter apart \rightarrow slows down the growth of structure.

$$\ddot{\delta} + 2H\dot{\delta} - \frac{c_s^2}{a^2}\nabla^2\delta = 4\pi G\bar{\rho}\delta$$

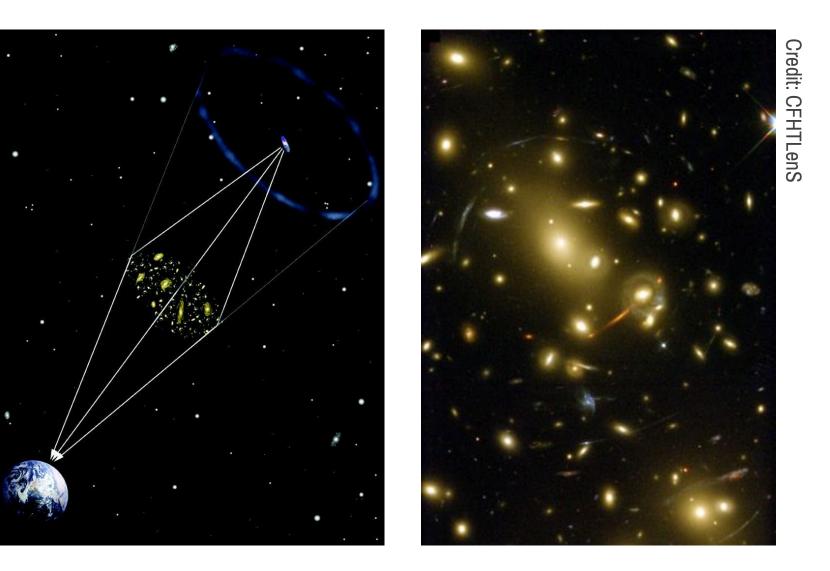


LSS Probes: GROWTH

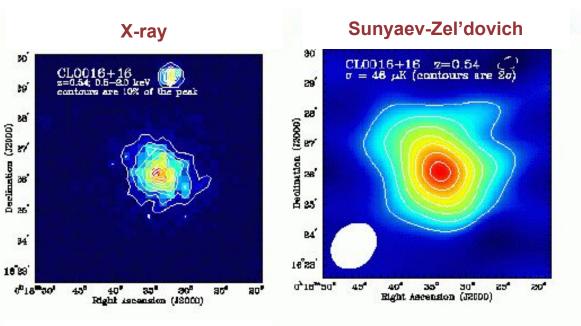


Credit: Katrin Heitmann

LSS Probes: Weak Lensing



LSS Probes: Clusters



31' 37 29

Declination (J2001)

10'22'

00"18"50"

40*

35*

30*

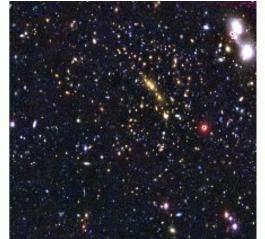
Matt Astanako (17000)

15*

20

15

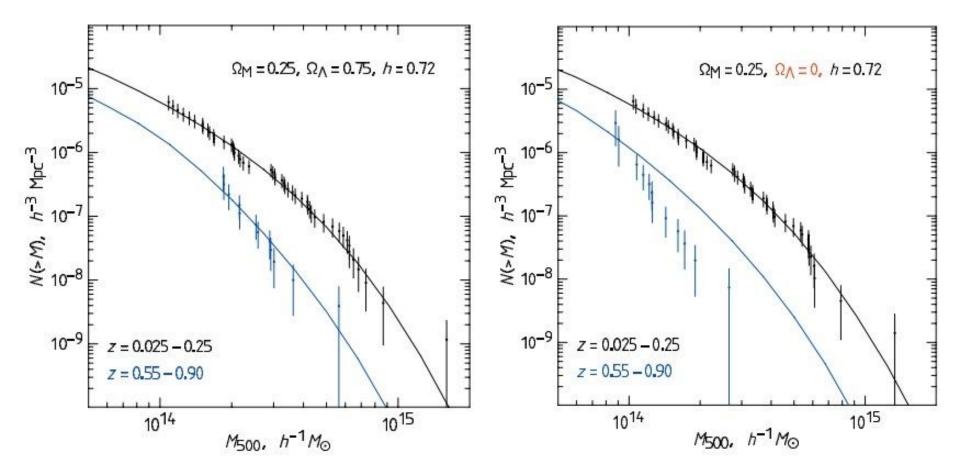
Optical galaxy concentration



G. Holder

LSS Probes: Clusters

VIKHLININ ET AL.



Summary

- 1. Cosmological Observations: different wavelength gives us information about matter distribution at different time (redshift)
- 2. Growth of Structure: growths happens mainly during matter dominated era
- 3. Gaussian Random Field: the power spectrum
- 4. The Matter Power Spectrum: sensitive to dark matter, dark energy, massive neutrinos, etc.
- 5. Large Scale Structure Probes: SN Ia, BAO, weak lensing, clusters, etc.

Artificial satellites

LA (HUES 201

COSMOS 235 (013)

And Annual Cal

QPS U

MOLNIXA 3-45

ALC: N

state of law relation