

Development of Cryogenic Thermal Detectors for Sub-GeV Dark Matter

Noemie Bastidon¹, Clarence Chang², Enectali Figueroa-Feliciano¹, Ziqing Hong¹, Valentine Novosad², **H Douglas Pinckney^{1,3}**, Gensheng Wang², Volodymyr Yefremenko²

- 1. Northwestern University
- 2. Argonne National Lab
- 3. University of Massachusetts Amherst

Motivation

- Low mass dark matter (M_{DM} < 1 GeV) is an interesting problem to solve
- Could be detected via collision with Silicon nuclei with detector threshold of around 10 eV
- Will describe the design/fabrication efforts of such a cryogenic detector

Transition Edge Sensor (TES) Basics

• Use the sharp temperature-resistance transition of a superconductor to convert thermal to electrical signals

- How can we reach 10 eV threshold with this method?
 - Low heat capacity
 - Lowers exposure mass

- How can we reach 10 eV threshold with this method?
 - Low heat capacity
 - Lowers exposure mass
- Idea: Use many separate absorbers
- Challenge: Tedious fabrication

- How can we reach 10 eV threshold with this method?
 - Low heat capacity
 - Lowers exposure mass
- Idea: Use many separate absorbers
- Challenge: Tedious fabrication
- Solution: Separate thermal circuitry, can manufacture many at once

- How can we reach 10 eV threshold with this method?
 - Low heat capacity
 - Lowers exposure mass
- Idea: Use many separate absorbers
- Challenge: Tedious fabrication
- Solution: Separate thermal circuitry, can manufacture many at once

1. Energy absorbed

- 1. Energy absorbed
- Energy flows through absorber gold pad and wire bond to thermal chip

- 1. Energy absorbed
- Energy flows through absorber gold pad and wire bond to thermal chip
- 3. Energy flows through TES

- 1. Energy absorbed
- Energy flows through absorber gold pad and wire bond to thermal chip
- 3. Energy flows through TES
- 4. Energy flow out of TES controlled by geometry of gold meander

Theoretical Results

- 5 eV threshold
 - Tungsten TES
 - 1 cm³ Silicon Absorber
 - 20 mK transition temperature

Practical Implementation

- Create a mask for initial tests
- Current testing apparatus has base temperature around 50 mK
 - Aim for transition temperature of around 85 mK
 - Mask design has contingency for transition temperatures of 60 mK 100 mK
- Mask prepares for multiple absorber materials
 - Silicon
 - Germanium
 - Zinc
 - No absorber

First Tests

- Transition temperature check
 - Observed at 85 mK and 80 mK

Transition temperature test structure

Future Tests and Goals

- Future Tests:
 - Measure gold thermal conductance
 - Observe pulses
 - Compare with the model
- Goal:
 - Move towards the lower transition temperature design for better performance

Conclusions

- Cryogenic thermal detectors can theoretically reach the sensitivity necessary for sub-GeV dark matter searches
- High temperature proof-of-concept tests are underway
- Low temperature tests should be in the near future

Acknowledgments

- The study resulting in this presentation was assisted by a grant from the Undergraduate Research Grant Program which is administered by Northwestern University's Office of Undergraduate Research. However, the conclusions, opinions, and other statements in this presentation are the author's and not necessarily those of the sponsoring institution.
- Additional funding was provided through the NASA Illinois Space Grant

References

- E. Figueroa-Feliciano. *Complex microcalorimeter models and their application to position-sensitive detectors*. JAP (2006)
- M. Pyle et al. *Optimized designs for very low temperature massive calorimeters.* (2015) **arXiv:1503.01200v2**

Bonus Slides

Model Parameters

Connection	Thermal Conductance		Compon
	[W/K]		Absorbe
Absorber - Glue	$1 \times 10^{-9} [14]$		Glue
Absorber - Gold Pad 1	$2 \times 10^{-8} [5]$		Gold Pa
Glue - Die	$1 \times 10^{-9} [14]$		Wire Bo
Die - Gold Pad 2	$1 \times 10^{-10} [5]$		Gold Pa
Die - TES	$6 \times 10^{-12} [5]$		Die
Die - Meander	$1 \times 10^{-9} [5]$		TES
Gold Pad 1 - Wire Bond 1	7×10^{-6} [19]		Meander
Wire Bond 1 - Gold Pad 2	7×10^{-6} [19]	Wire Bo ### Electrical L : 1.0e- Rl : 0.02 alpha0 : 100. beta0 : 1. Rn : 1. Ccap : 5.0e- I0_NL : 1.73 electronics_no one_over_f_gam lowpass : 30001 lowpasspoles	
Gold Pad 2 - TES	$5 \times 10^{-6} [19]$		
TES - Meander	2×10^{-5} [19]		
Meander - Wire Bond 2	8×10^{-11}		
Wire Bond 2 - Bath	$2 \times 10^{-6} [19]$		

Component	Heat Capacity [J/K
Absorber	5×10^{-12} [15]
Glue	7×10^{-15} [18]
Gold Pad 1	1×10^{-11} [16]
Wire Bond 1	1×10^{-11} [16]
Gold Pad 2	5×10^{-14} [16]
Die	2×10^{-14} [15]
TES	5×10^{-14} [17]
Meander	4×10^{-13} [16]
Wire Bond 2	$1 \times 10^{-11} [16]$

Electrical Components ### : 1.0e-7

#Inductor in Thevenin Equivalent [Henries] #Load/Shunt Resistor [Ohms] #Temperature Sensitivity [Unitless] #Current sensitivity [Unitless] #normal resistance of the TES [Ohms] : 5.0e-12 #Capacitor in Thevinin equivalent Circuit [Farads] #[Amps], taken from the nonlinear solver at large time after equilibrium had been reached _NL : 1.73165509123e-06 ectronics noise : 3.0e-11 # extra electronics noise at a constant level [A/sqrt Hz] ne_over_f_noise : 3.0e-11 # one over f noise coefficient ne_over_f_gamma : 0.5 # exponent for one over f noise wpass : 3000000.0 # frequency of low pass filter[Hz] #number of poles in filter [n/a] : 1.0

Noise Spectrum

Resolution Calculation

Responsivity

Resolution_{FWHM} = $2.35 \left(\sqrt{\int_0^\infty \frac{4df}{\text{NEP}(f)^2}} \right)^{-1}$

Mask Design Optimization Results

Material	Temperature [mK]	Time Constant [ms]	Resolution [eV FWHM]
Silicon	60	10	20
	80	19	41
	100	40	71
Germanium	60	25	34
	80	40	81
	100	59	163
Zinc	30	10	32
	60	51	222
	80	101	539
	100	102	715
None	60	0.05	1.9
	80	0.12	3.2
	100	0.25	5.2

Threshold = $7.5 \left(\frac{\text{Resolution}_{\text{FWHM}}}{2} \right)$

Absorber Heat Capacity at 20 mK

	Silicon	Zinc	Sodium Iodide
$1 \mathrm{cm}^3$	$5 \times 10^{-12} \text{ J/K}$	$5 \times 10^{-11} \text{ J/K [9]}$	$8 \times 10^{-11} \text{ J/K} [21]$
$0.4 \mathrm{cm}^3$	$2 \times 10^{-12} \text{ J/K}$	x	X