

RADON REDUCTION SYSTEM FOR LZ DARK MATTER EXPERIMENT

Maris Arthurs

On behalf of the Michigan DM Group 16-July-2018

Radon—Where From & Why Bad ?

- \Box ²²²Rn is a decay product of ²³⁸U that is everywhere
	- τ_{Rn} = 5.516 day (mean lifetime)
- \Box Radioactive noble gas with chemistry similar to xenon
- \Box Dissolves in liquid xenon (LXe) and isn't removed with hot gas purifying getters
- \Box ²²²Rn continuously emanates from detector components
- \Box Decay products of ²²²Rn can mimic Dark Matter signals
	- β -decay of ²¹⁴Pb can end up in the WIMP ROI and survive the S2/S1 discrimination cut.

Radon—Largest Background Source in LZ

 3.5 2 cm^2 **LZ sensitivity (1000 live days)** WIMP-nucleon cross section at 40 GeV/c Projected limit (90% CL one-sided) 3 low estimate projected high estimate highest estimate ow estimate 2.5 2 1.5 1 0 2 4 6 8 10 ²²²Rn specific activity $[\mu Bq/kg]$

The background spectra in the 5.6 ton fiducial volume of the LZ LXe TPC for single scatter events

High and low correspond $+1\sigma$ and -1σ of all $222\overline{R}$ n screening measurements, respectively.

- \Box The highest scenario assumes no reduction in emanation rate at LZ operating temperatures, 175K
- 1222 Rn emanation rates from warm cables and feedthroughs of LZ detector components estimated to be in 8.3-20 mBq range

In-line Radon Reduction System for LZ

The LZ goal is to reduce ²²²Rn background of the warm section (cables and feedthroughs) below 1 mBq, about an order of magnitude reduction from current estimates, 8.3-20mBq.

 $N = \tau_{Rn} A (= 5.516 d * 1 mBq) =$ 476 Rn atoms (steady-state population)

- **q** Sequestration of atoms in activated carbon trap until most 222Rn nuclei decay
	- \blacksquare Analogous to gas chromatography: v(Xe)/ v(Rn) (-85 C) ≈ 1000
- \Box In order to obtain removal of 90%, sequestration time must be greater than ln(10)⋅ $\tau_{\text{Rn}} = 12.7 \text{ days}$

Michigan Radon Reduction R&D

- 1: SAES high temperature gas purification getter
- 2: Gas flow meter

- 3: Emanation chamber with 238 U ores
- \Box 4: Radon source (Pylon source (103.6 kBq))
- \Box 5: Cryostat with charcoal trap
- ¨ 6: RAD7 radon detector
- ¨ 7: In-house radon detector

Different Activated Charcoals Tested

Elution Curves for Ar in a 0.1l Trap at 293K 300 $\overline{\mathbf{a}}$

- \Box ²²²Rn adsorption characteristics on various charcoals were studied in N_2 , Ar, and Xe carrier gases.
- \Box Vastly different transition times for various charcoal types.
- \Box By measuring the ²¹⁸Po spectra after ²²²Rn injection, elution curves were obtained using the chromatographic plate model—the charcoal trap is divided into stages of equal volume where the gas and charcoal are in equilibrium.

ka—The Dynamic Adsorption Coefficient لكا عليه عليه العاليا – L'ine I — The Dynamic Adsorption Coefficien 50 50 <u>the</u> 4 62 57 $\bf C$ 0 $\bf \epsilon$ 88 95 29 ± $\overline{}$ invarious

- The \mathcal{L}_max is given by the linear relation \mathcal{L}_max $\tau = \frac{k_a m}{c}$ the absorption coefficient by $\tau = \frac{k_a m}{f}$, obtained from the fit of the elution curves. \Box τ , the average breakthrough time for radon is related to fit of the elution curves.
- k_a -values for N_2 and Ar as a function of the inverse $\frac{1}{2}$ of the trep follow Λ when in $\frac{1}{2}$ for the mass flow rate in $\frac{1}{2}$ temperature of the trap follow Arrhenius law for the *need characals* α divalues. tested charcoals.

number of theoretical stages.

8

 $\frac{1}{\sqrt{2\pi}}$ ka-values for 222Rn range from 5-45 l/g in N₂ and Ar $\frac{1}{\sqrt{1-\frac{1}{\pi}}}$ carrier gases, while in Xe they are an order of magnitude 263 K $\overline{\text{ind}}$ ige from 5-45 I/g in N_2 and \overline{C} .
Le thev are an order of magn $\frac{1}{\sin N_2}$ $\frac{1}{2}$ ge from 5-45 $1/g$

For Xe as the carrier gas the k_a -values in Saratech and etched $(HNO₃)$ Saratech consistent with Arrhenius law, $h_{\text{interferometric (1000K)}}$ $\text{H}_{\text{interferometric (1000K)}}$ $\text{H}_{\text{interferometric (1000K)}}$ $\text{H}_{\text{interferometric (1000K)}}$ **EXECUTE 2008** Section OVC 3x8 as the carrier gas the k_a -values in Saratech and k_a -values in Saratech character of the same of the sa \int_{0}^{2} 21 te
** er
L S
. $\frac{1}{2}$ $\sum_{r=1}^{n}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\overline{}$

Adsorption of Xenon gas on Charcoal

Xe atoms have high polarizability and tend to occupy the charcoal adsorption sites much faster resulting in the short 222Rn breakthrough times.

- Increases linear with decreasing temperature
- Increases only slightly with pressure
- Saratech adsorbs on average about 30% less Xe than CarboAct at atmospheric pressures .
- Adsorption of N_2 and Ar gases was below detection limit of the scale, (below 20 g of charcoal)

Building a Radon Trap An Iron [2] EXO-200 Collaboration, Search for Majorana neutrinos with the first two years of EXO-200 data, Nature, 510 (2014) 229–234.

10 3

Lowest achievable Rn concentration is limited by specific activity (s_0) **of** \Box Powest achievable Kir concentration is infined by sp uctual code in the Nuclear Chem., 203(2) (1996) 353–375.

[3] V. E. Guiseppe et al., The Status and Initial Results of the MAJORANA

□ Need 5 – 7 kg of etched Saratech to reduce Rn concentration from warm cables and feedthroughs at the output of the trap below 1 mBq cation and recuments at the output of the trap bet

Even though CarbAct has lowest s_0 , not most efficient trap material for

Conclusion & Acknowledgments

- \Box ²²²Rn breakthrough times in N₂ and Ar carrier gases are significantly longer than in Xe carrier gas.
	- This may be attributed to the lower polarizabilies of N_2 and Ar compared to Xe
- \Box Among the investigated charcoals, Saratech appears to be the most efficient ²²²Rn reduction material.
	- Chemical etching of Saratech with $HNO₃$ acid reduced the intrinsic radioactivity (²³⁸U) by about a factor of three.
	- Etching did not affect the ²²²Rn adsorption characteristics of Saratech making it a strong candidate for a trap.
- \Box Published in NIM journal: A 903 (2018) 267–276

This work was supported by DOE

Backup Slides

218Po and 214Po peaks $-64.0 - 7.64$ \sim 210P $_{\Omega}$ and 214P $_{\Omega}$ vent current leakage. The reverse voltage (-800 V) was applied \mathbf{z} 20 \mathbf{z} particle spectra where the integral-area of the peak was determined by the peak was determined by the peak was

$$
f(x, \mu, \sigma, \nu) = \frac{A}{2\nu} e^{(\frac{x-\mu}{\nu} + \frac{\sigma}{2\nu^2})} erfc\left(\frac{1}{\sqrt{2}}\left[\frac{x-\mu}{\sigma} + \frac{\sigma}{\nu}\right]\right),
$$

□ Fitted to this analytical | function for alpha spectra from which the area of the peak can be \Box determined. \Box and \Box and \Box the Gaussian probability function, \Box left-side exponential function. A typical radius $\frac{1}{\sqrt{2}}$ \mathbb{R} is spectra from which the $\frac{d}{dx}$ and $\frac{d}{dx}$ calgon $\frac{d}{dx}$ can be

Arrhenius Law

$$
k = Ae^{\frac{-E_a}{k_bT}}
$$

 \Box Describes the rate of chemical reactions

- \Box k: rate constant
- E_a : activation energy (J)
- k_b : Boltzmann constant (J/K)
- \Box T: temperature (K)

