

RADON REDUCTION SYSTEM FOR LZ DARK MATTER EXPERIMENT

Maris Arthurs

On behalf of the Michigan DM Group 16-July-2018

Radon—Where From & Why Bad ?

2

- ²²²Rn is a decay product of ²³⁸U that is everywhere
 - $\tau_{Rn} = 5.516$ day (mean lifetime)
- Radioactive noble gas with chemistry similar to xenon
- Dissolves in liquid xenon (LXe) and isn't removed with hot gas purifying getters
- ²²²Rn continuously emanates from detector components
- Decay products of ²²²Rn can mimic Dark Matter signals
 - β-decay of ²¹⁴Pb can end up in the WIMP ROI and survive the S2/S1 discrimination cut.

Radon—Largest Background Source in LZ

The background spectra in the 5.6 ton fiducial volume of the LZ LXe TPC for single scatter events

High and low correspond $+1\sigma$ and -1σ of all ²²²Rn screening measurements, respectively.

- The highest scenario assumes no reduction in emanation rate at LZ operating temperatures, 175K
- ²²²Rn emanation rates from warm cables and feedthroughs of LZ detector components estimated to be in 8.3-20 mBq range

In-line Radon Reduction System for LZ

The LZ goal is to reduce ²²²Rn background of the warm section (cables and feedthroughs) below 1 mBq, about an order of magnitude reduction from current estimates, 8.3-20mBq.

- $N = \tau_{Rn} A (= 5.516 d * 1 mBq) =$ 476 Rn atoms (steady-state population)
- Sequestration of atoms in activated carbon trap until most ²²²Rn nuclei decay
 - Analogous to gas chromatography: $v(Xe)/v(Rn)(-85 \text{ C}) \approx 1000$
- □ In order to obtain removal of 90%, sequestration time must be greater than $\ln(10)$ $\tau_{Rn} = 12.7$ days

Michigan Radon Reduction R&D

- 1: SAES high temperature gas purification getter
- **2:** Gas flow meter

5

- 3: Emanation chamber with ²³⁸U ores
- □ 4: Radon source (Pylon source (103.6 kBq))
- 5: Cryostat with charcoal trap
- □ 6: RAD7 radon detector
- □ 7: In-house radon detector

Different Activated Charcoals Tested

CarboAct Saratech

Charcoal	Density (g/cm ³)	Surface area (m²/g)	Spec. activity (mBq/kg)	Price (\$/kg)
Calgon OVC 4x8	0.45	1,100	53.6 ± 1.3	6
Shirasagi	0.45	1,240	101 ± 8	27
Saratech	0.60	1,340	1.71 ± 0.20	35
Saratach (HNO ₃)	0.60	1,340	0.51 ± 0.09	135
CarboAct	0.28	1,000	0.23 ± 0.19	15,000

Elution Curves for Ar in a 0.11 Trap at 293K

- ²²²Rn adsorption characteristics on various charcoals were studied in N₂, Ar, and Xe carrier gases.
- Vastly different transition times for various charcoal types.
- By measuring the ²¹⁸Po spectra after ²²²Rn injection, elution curves were obtained using the chromatographic plate model—the charcoal trap is divided into stages of equal volume where the gas and charcoal are in equilibrium.

k_a—The Dynamic Adsorption Coefficient

- τ , the average breakthrough time for radon is related to the absorption coefficient by $\tau = \frac{k_a m}{f}$, obtained from the fit of the elution curves.
- \square k_a-values for N₂ and Ar as a function of the inverse temperature of the trap follow Arrhenius law for the tested charcoals.

ka-values for 222Rn range from 5-45 l/g in N_2 and År carrier gases, while in Xe they are an order of magnitude lower, 0.5-3 l/g.

For Xe as the carrier gas the k_a -values in Saratech and etched (HNO₃) Saratech consistent with Arrhenius law, however in CarboAct, violates it.

Adsorption of Xenon gas on Charcoal

- Xe atoms have high polarizability and tend to occupy the charcoal adsorption sites much faster resulting in the short ²²²Rn breakthrough times.
 - Increases linear with decreasing temperature
 - Increases only slightly with pressure
- Saratech adsorbs on average about 30% less Xe than CarboAct at atmospheric pressures .
- Adsorption of N₂ and Ar gases was below detection limit of the scale, (below 20 g of charcoal)

Building a Radon Trap

10

222Rn output concentration, (mBq)

Lowest achievable Rn concentration is limited by specific activity (s_0) of charcoal

Need 5-7 kg of etched Saratech to reduce Rn concentration from warm cables and feedthroughs at the output of the trap below 1 mBq

Even though CarbAct has lowest s_0 , not most efficient trap material for low(ish) mass

Conclusion & Acknowledgments

- □ 222 Rn breakthrough times in N₂ and Ar carrier gases are significantly longer than in Xe carrier gas.
 - This may be attributed to the lower polarizabilies of N_2 and Ar compared to Xe
- Among the investigated charcoals, Saratech appears to be the most efficient ²²²Rn reduction material.
 - Chemical etching of Saratech with HNO_3 acid reduced the intrinsic radioactivity (²³⁸U) by about a factor of three.
 - Etching did not affect the ²²²Rn adsorption characteristics of Saratech making it a strong candidate for a trap.
- Devisible of Published in NIM journal: A 903 (2018) 267–276

This work was supported by DOE

Backup Slides

²¹⁸Po and ²¹⁴Po peaks

J

$$f(x,\mu,\sigma,\nu) = \frac{A}{2\nu} e^{(\frac{x-\mu}{\nu} + \frac{\sigma}{2\nu^2})} erfc\left(\frac{1}{\sqrt{2}} \left[\frac{x-\mu}{\sigma} + \frac{\sigma}{\nu}\right]\right),$$

Fitted to this analytical function for alpha spectra from which the area of the peak can be determined.

Arrhenius Law

$$k = Ae^{\frac{-E_a}{k_b T}}$$

Describes the rate of chemical reactions

- □ k: rate constant
- \Box E_a: activation energy (J)
- k_b : Boltzmann constant (J/K)
- $\Box \quad T: temperature (K)$

