

Electron Trains in LXe TPCs

Amanda Depoian

DMSS @ UAlbany July 2018

XENON1T

https://phys.org/news/2017-05xenon1t-sensitive-detector-earthwimp.html

DMSS July 2018

 10^{3}

 10^{3}

Probing lower S2 energies

Amanda Depoian

20

CRESST-II

PICO-21

Photoionization

https://arxiv.org/pdf/1311.1088.pdf

Amanda Depoian

Electron Train Background

Malter effect

Trapped positive ions on the cathode can lower the work function of the metal, making it easier to emit electrons. This may lead to few-electron bursts.

DMSS July 2018

DMSS July 2018

Amanda Depoian

Long lived excited states

https://arxiv.org/pdf/1711.07025.pdf

My Work

Determining the decay constant(s) of the electron trains

Determining electron efficiency by analyzing data with different electric fields

Conclusion

- Electron trains could be caused by:
 - Photoionization
 - Trapped electrons
 - Malter effect
 - Long lived excited states
- By eliminating these electron trains we can use noble element detectors to probe for sub GeV/c² dark matter particles!

Back up slides

Equations to slide 9

$$\phi_b = \frac{e^2}{8\pi\epsilon_0 z} \frac{\epsilon - 1}{\epsilon + 1}.$$

Schottky barrier – aka work function. As an electron approaches a dielectric boundary that is held at a constant potential, the force due to it's image charge results in an energy barrier.

epislon => dielectric constant of boundary (1.5-2 for xenon)

z => characteristic dimension of the order of the lattice constant (~5 angstrom)

$$\Delta \phi_b = e \left(\frac{eE}{4\pi\epsilon_0 z} \frac{\epsilon - 1}{\epsilon + 1} \right)^{1/2}$$

The external field E does two things with respect to electron emission: it increases the energy of the drifting electrons, and it lowers the height of the barrier by an amount equal to

$$\kappa = \int_{\phi_b - \Delta \phi_b}^{\infty} \varepsilon^{1/2} f_0(\varepsilon) d\varepsilon \bigg/ \int_0^{\infty} \varepsilon^{1/2} f_0(\varepsilon) d\varepsilon,$$

Electron emission efficiency. the factor $\epsilon 1/2$ serves to select electrons whose velocity has a component directed toward the barrier.

f_0 is the electron energy distribution $\epsilon \rightarrow$ energy

$$\kappa_n = 1 - (1 - \kappa)^n.$$

Electron emission efficiency after n tries