

Detector Construction & Integration

For more details, see "Status report" document CMS RRB-D 2001-111

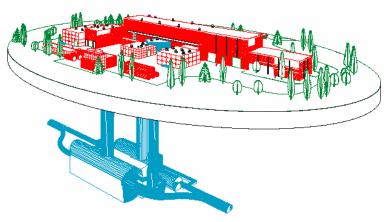
v 31 baseline schedule and milestones

frozen & approved by LHCC: takes into account all known sub-detector delays

Subdetector construction progress :

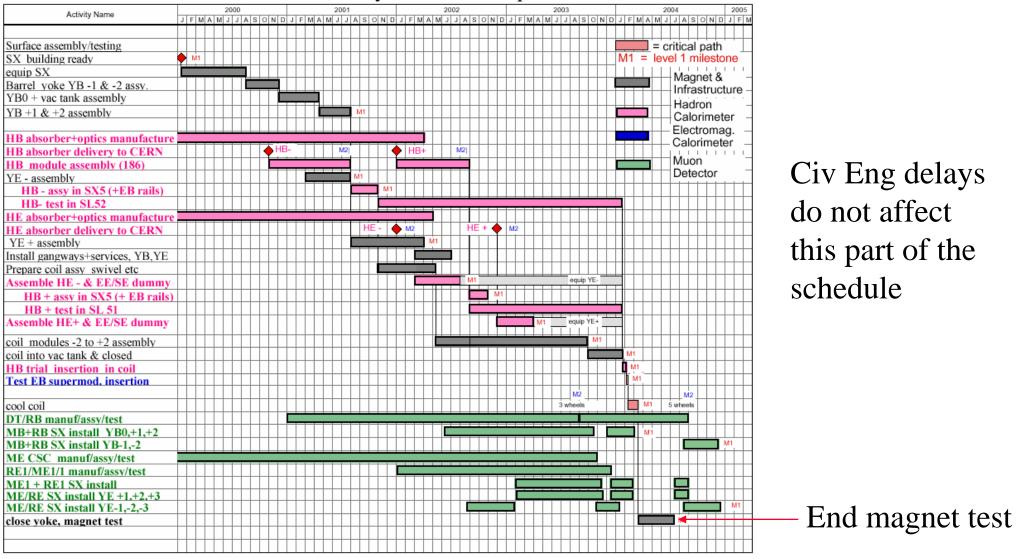
(including standard production monitoring charts)

Tracker Electromagnetic calorimeter Hadron calorimeter Muon system Trigger, DAQ & CPT


Integration & coordination progress (examples)

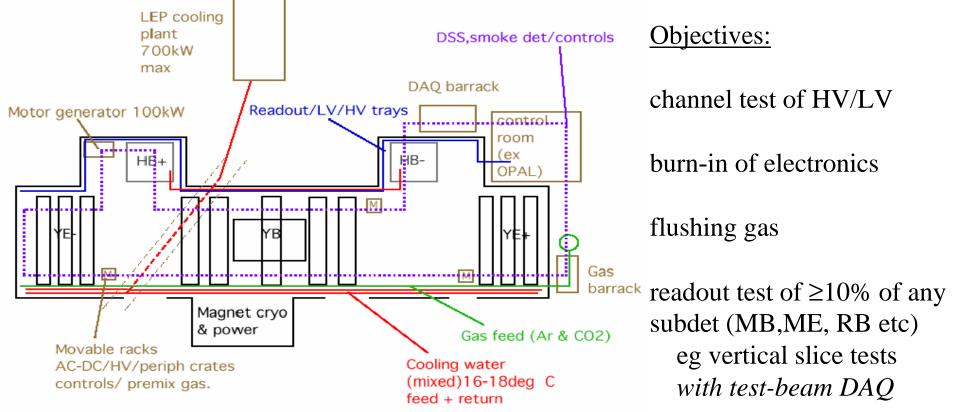
Conclusion

Schedule & Milestones v31


- Reminder of v31 boundary conditions
 - * UX Civil Engineering complete: April 04
 - * CMS closed for LHC commissioning : Feb 06
 - * pilot run: April 06 : 1 month
 - * shutdown of \geq 3 months after pilot run.

- * both em endcaps (EE) + pixel tracker installed in shutdown after pilot run
- * 10 fb⁻¹ physics run starts Aug 06
- Actions to respond flexibly to Civil Engineering delays
 - * pit head cover constructed by main contractor
 - * start UXC and USC preparation before Civ. Eng complete
 - * SCX building delivered ~ 3 months early (autumn 04)
 - * pre-cable & pre-test subsystems on the surface (extra SX infrastructure)
 - * install EB in HB on the surface (after magnet test)

v31 schedule up to end of magnet test



Civ Eng delays do not affect this part of the schedule

SX: extra infrastructure

Compensate Civ. Eng. delays & efficiently conclude part of installation.

- complete + endcap before mag test \rightarrow full understanding of LV and cabling

- endcap and barrel central wheel pre-cabling after magnet test

This increased activity in SX requires additional resources (C & I) CMS RRB 23-10-01 Austin Ball

CMS RRB-T 200 1-115

v31 schedule: after magnet test

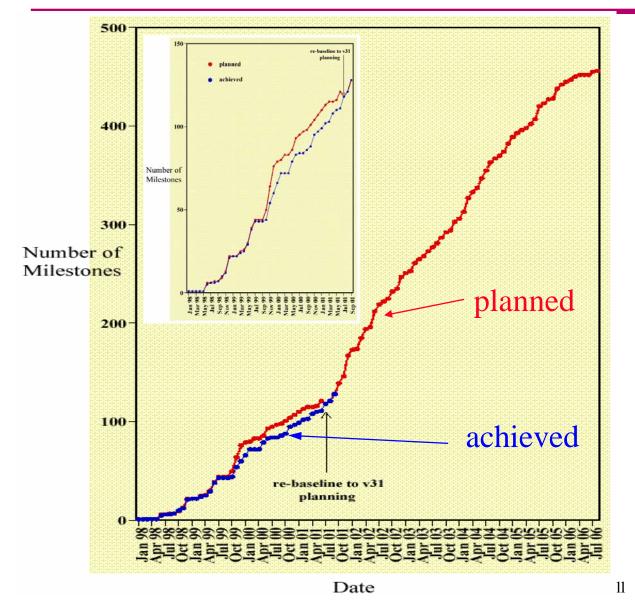
16 Jun 2001 Austin Ball

Activity Name		2003								200						2005													2006									
	0	N	D		F	M	A	1	м	J	J	А	S	0) N	_		J	F	Μ	A	M	J	J	A	s		N	_		F	Μ	Α	М	J	J	Α	S
Critical path from SX assembly				к И ——							_				_		х м –													х м —		_						
Magnet test			<u> </u>						_	_	М	1_			_		Α													A		_						
Install EB +			_ °	, 									M1				s													s	_							
Assemble HF							-	_	_	_		M1																										
YB-,YE- mu install (SX)																-	M	1																				
																	_ M	luon	Ch	 amh	 hor l	IX I	 neta	 IIIati	 on/a		 ee _											
UX Installation																				YB_			1	-M1			33	- M										
																						1		- MIT				IM	'									
UX Civil Engineering finish				+	+		6	_ M1	ı †	+				\vdash		+		+			- YE	+		1		T YI	÷. –		+	+	+	-	-				_	
Prepare UX area	<u> </u>	-		+	+	-	Ť		-				M1	-		-		+				-		+	-	+	-	+	+	+	+-	-	-					
Install floor plates & CMS shielding							-		-	M1			t "''	1	-	+		+				-		\vdash	+	+-	+	+	+	+	+		-					-
Prepare US area (infra/racks/cooling	-		F								M1			\vdash	+	+	+	dat			and		And co		/D 4					inc	+		-					
Equip US with crates, DCS									- 1						м	1	+	det	ect	or r	ead	out/	trig	ger	DP -	Q	om	mis	sion	ing		Q.0 rea		-				
SCX ready for control room inst				+	+	+	+	+	-	-1		-		<u>и</u> 1			+	local	trig/I ا ک			-		.0 in: I	talled	in S(CX _	-	-	+		- i -	- -				_	-
Commission detectors/ DAQ		-	-	+-	+	+-	+	+	+	+			Ť.	Ϊ.		_	_	_		(-	V	-	-	-	-	_		-	_		1		ŕ			
Frigger/DAQ integration				+	+	+	+	+	+	-	_			\vdash					_					M1	F	1	-	1	-	-	-	1	-					-
Cabling (heavy + fibre optics)		-		+-	+-	+-	+	+	+	-				┢	Ē		+		-			-	-	÷			T			T	1		-					-
Lower major elements				+-	+-	+-	+	+	+	-	_			_		-	1	-	M1			—	-	Τ.			+	+	-	+	+							-
Install HB. Commission HB/HE/HF		-	-	+	+	+-	▼	+	+	+				2	F	-	-	I M1		i —	_	-	-	-	1			-		+	+						_	
EB supermod. assembly/calibration							Y							\vdash			T			3	-	+ en	1		M1	+	- er	d	M		+	-					_	-
EB- install. Commission EB+ & EB-						EB	+ M2	2				F	в- м	2		+	+	┢╧		5_			vi1	+		+				"	+	-						-
EE dee assy & calib. SE assembly				+	+	+	+	+	+	-	_			-		E+/8		-	7	7 5	- M2		7	-	-	+	ΤE	в- —		EE- N	12	╈	-					-
EE/SE+ install & commission				+-	+-	+-	+	+	+	-				\vdash	+			×12	_				Y			+	+	+			-	1						-
TK manufacture & assembly			-						_				-	-			_			M2						+	+	-	-	-	-							-
TK install & commission			1	1	1		1						1	1			1					╞	-					÷ •	/1	+	+		-					-
SE- install/commission		-	-	+	+	+-	+	+	+	+				┢	-	+	+	+				-	—	4			M	1	+	+	+		-				_	
Install beampipe	<u> </u>	-	-	+-	+-	+-	+	+	+	+	_			\vdash		+	+	+				-	-	+		-	-	-		M			-					-
	<u> </u>	-	-	+	+	+-	+-	+	+	\rightarrow	_			\vdash	_	+	+	+				-		+		+-	-	5	-	6	м	-	-					-
Close expt (yoke/HF/shielding) Online/Offline Computing installation	<u> </u>	-	-	+-	+-	+-	+-	+	+	\rightarrow	_			_		_	_	_	_			_		_		_	_	-	_		M	-	-					-
	<u> </u>	-	-	+	+-	+-	+-	+	+	+	_		-			-	-	-	-			-		-	-	-	-	-	-		IV.	-						-
LHC 1-beam commissioning	<u> </u>		-	+	+	+-	+-	+	+	\rightarrow	_		<u> </u>	\vdash	_	+-	+	\rightarrow				-	-	+	-	+-	+-	+-	_	+-			M	4				-
CMS ready for colliding beam			-	-	-	-	+-	_	+	-	_			-	-	-	+	+				-		-	+	-	+	+	+	-	-			-				-
LHC pilot run				_	-	_	_	_	+	_				-	_	_	+	_				-		-	-	_	_	_	_	_	_	_						-
Open detector				-	-	_	_	_	+	_				-	_	_	+	_				-		-	-	_	_	_	_	_	_	_	-				M1	
Install EE-, pixels, T1 +maintain				_	-	_	_	_	+	_				-	_	_	+	_				-		-	-	_	_	_	_	_	_	_	_		7		IVI 1	-
Close detector																																						

Critical path (cabling & TRIDAS integr) under study in case u/g phase is further compressed

Milestones (monitored by LHCC)

baseline v31 frozen (LHCC 2001-030)


v26 Aug 99 v31 Oct 01 Surface Hall (SX5) Civ. Eng. finished 01/00Submit Trigger TDR 11/00 12/00 06/01 08/01 End Assembly of Barrel Yoke End Assembly of Endcap yoke YE-10/01End Assembly of HB- ½ barrel in SX5 10/01 01/02 04/02 End Assembly of Endcap Yoke YE+ HE- absorber mech assembly complete 07/02End Assembly of HB+ ½ barrel in SX5 07/02 10/02 Submit DAQ TDR 12/01 11/02 HE+ absorber mech assembly complete 03/03End Assembly of Coil Modules 02/03 10/03 Core Computing & Software TDR submission 12/03Coil inserted in Vac-tank and closed 04/03 01/04 HE Optics & HE/EE/SE cabling installed on endcaps 02/04End Trial Insertion of HB in Vac Tank 07/03 02/04 End Trial Mounting of EB Super Module on HB 08/03 02/04 End muon cham. SX installation on YE+, YB+2,+1, 0 03/04Coil cold, close yoke. 08/03 03/04 End Magnet Test in SX5 09/03 07/04 End assembly of HF in SX5 07/04End mechanical installation of EB+ in HB+ 08/04 End muon system SX installation on YE-, YB-12/0412/0420% data challenge complete Physics TDR submission 12/04

Underground Hall (UX5) Civ. Eng. finished	04/03	04/04
UX area floor plates and CMS shielding installed		05/04
US infrastructure & racks installed		06/04
SCX building ready for control room installation		08/04
UX ready: start lowering Magnet parts	01/04	09/04
DSS/DCS & local DAQ in USC ready for use		10/04
End mechanical installation of HB in UX5	05/04	01/05
All major elements lowered, dismantle gantry		01/05
End mechanical installation of EB in UX5	10/04	05/05
End Installation of DT+RB chambers in UX5		06/05
Coil ready to be powered in SX5		06/05
End mechanical installation of SE+	05/05	07/05
End Cabling and Test of + side HB/EB/HE/SE/MU		07/05
Start sub-detector Trigger/DAQ integration		07/05
End Mechanical Installation of SE-	05/05	09/05
End Installation and cabling of Tracker in UX5		10/05
Alignment system installed and tested		10/05
End cabling & test of -side HB/EB/HE/SE/MU		11/05
HF installation and testing in UX5 complete		11/05
End beampipe installation and bake-out		12/05
<i>Fully operational computing & reg. centres (20% capac)</i>		12/05
CMS ready for circulating beam (Yoke/HF/shielding)		01/06
Working CMS closed, DAQ.0 ready for colliding beam		03/06
End Installation, Test & Debug of EE+ & EE in UX5		07/06
End installation, test & debug of pixel tracker in UX5		07/06
Complete CMS closed, ready for extended physics run		08/06
Fully operational computing & reg. centres (100% capac)		12/07
DAQ.1 ready (100% capacity)		12/07

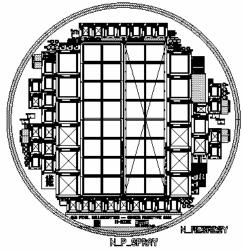
(890 milestones, 460 at Level 1 & Level 2)

Milestone progress :update Oct 01

92% of milestones then scheduled were complete at re-baselining (Jul 01)

v31 is a revised plan to complete CMS by Aug 06 taking into account latest sub-project planning and all known (Jul01) delays .

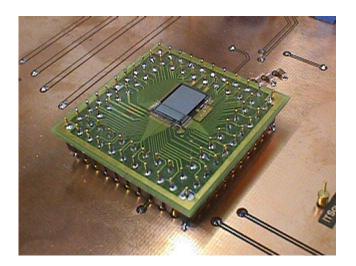
Expect to use v31 set of milestones to monitor CMS progress until at least mid 04 (after magnet test)

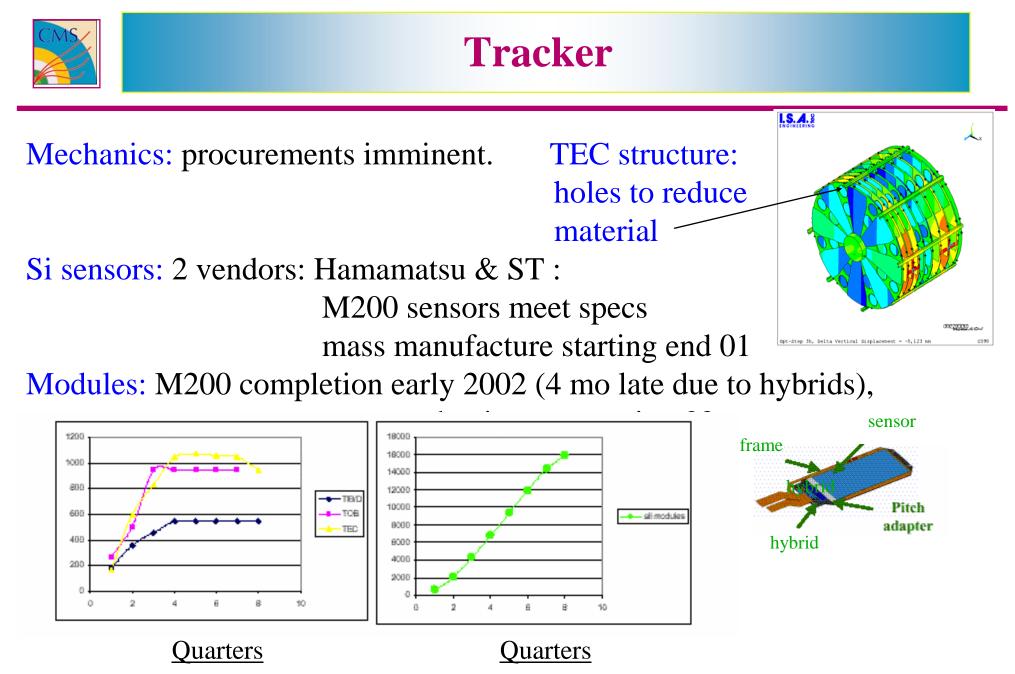

Pixel tracker

Still in development phase : first complete modules by mid-2002

EDR Jun 02, ESR 12/03

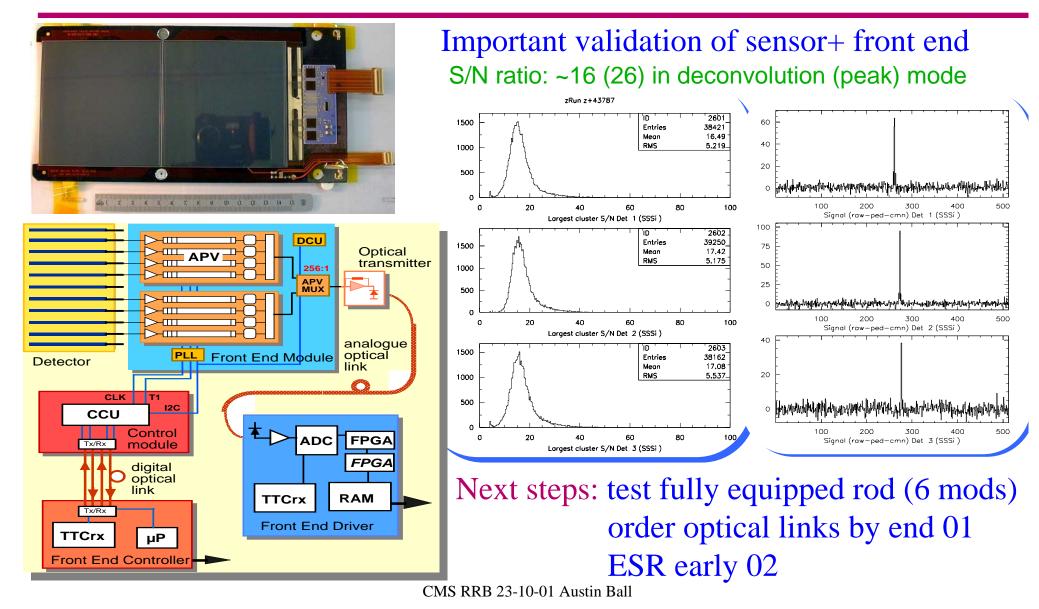
Full size sensor submitted Aug 01.


 $150 \times 150 \,\mu m$ & $150 \times 100 \,\mu m$

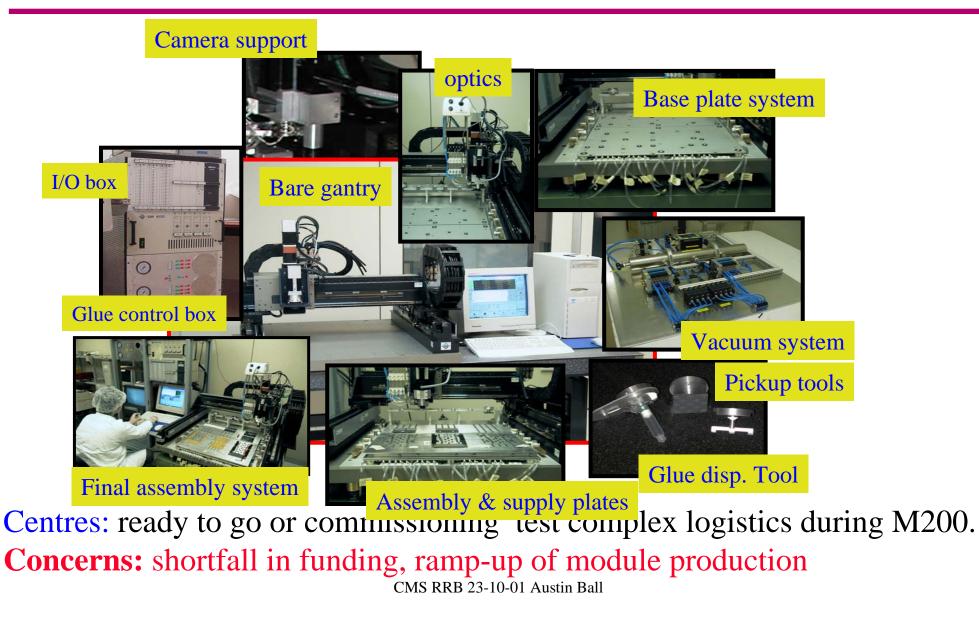

nlmetrili

Pixel concerns: none

Prototype DMILL ROC April 01 (column drain architecture): OK!


Full size DMILL r/o chip: submit Oct 01

CMS RRB 23-10-01 Austin Ball



Tracker: 2001 beam test of 3 modules

Tracker: module production :v31

Electromagnetic calorimeter

Barrel Crystals:

9000 (10 tons!) produced with $\leq 2\%$ rejection all crystals for barrel now under contract continuing development of ≥ 2 crystals per boule (difficulties: Pt procurement for crucibles infrastructure costs)

Barrel Mechanics:

grid re-designed, orders placed power cooling circuit re-designed module manufacturing centres ready module 0 (400 crystals) complete EDR 11/01 for "bare" supermodule production.

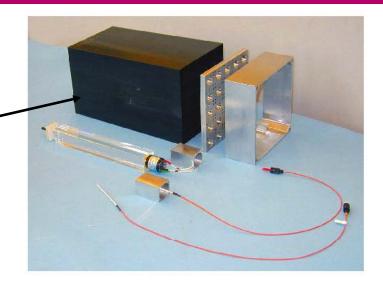
Electromagnetic calorimeter

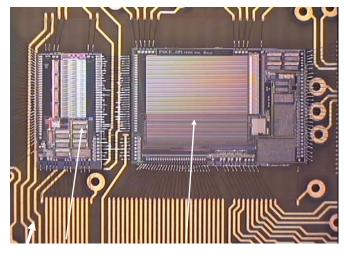
Endcap crystals: offers in hand,

assessing schedule/funds for ordering

Endcap mechanics:

40% of alveolar units delivered by end 01


EDR for full mechanics: mid 02

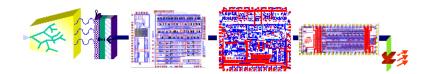

Preshower:

Steady progress: Si sensors & mechanics proceeding towards manufacture

DMILL readout chips look good,

launch $0.25\mu m$ version as backup

DELTA and PACE-AM chips



Electromagnetic calorimeter

Electronics for crystal barrel & endcap:

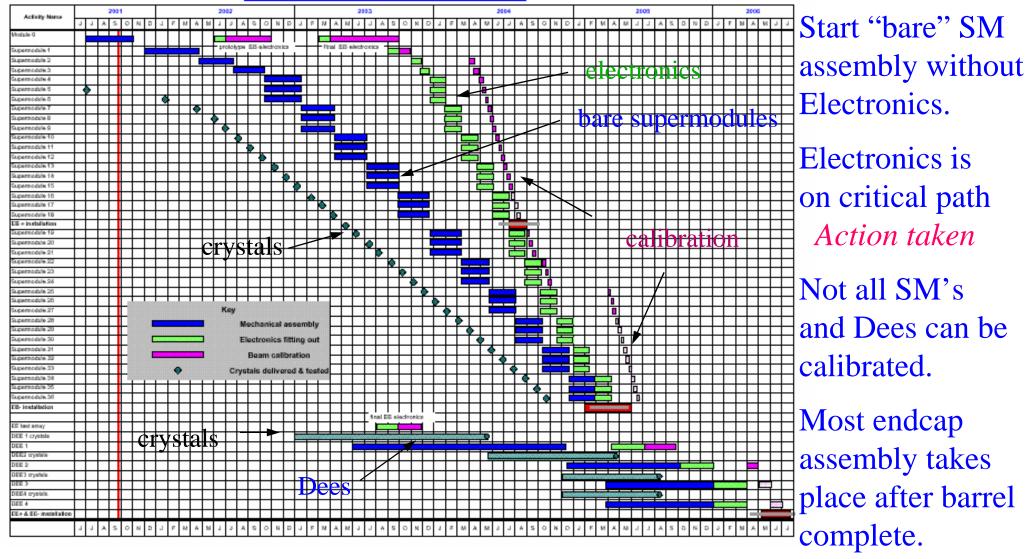
11,000 APD's delivered. Full screening effective (3.8% rejected) Pre-production of 500 VPT's successful: order placed.

front-end preamplifier noise being corrected, design back in Mar02

optical links: use $0.25\mu m$ and at double intended speed (reduce cost) Loss of 3 key personnel \rightarrow electronics chain ready only in 2003

→ modify SM construction/calibration strategy

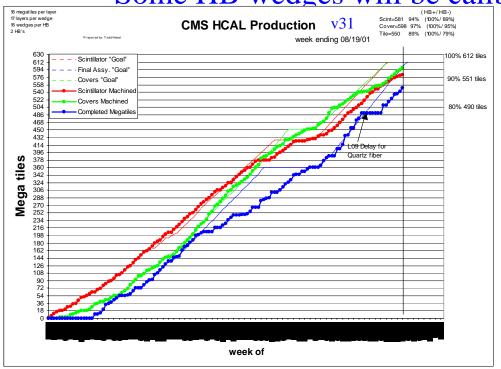
Organisation: consolidate barrel & endcap projects.


concentrate first on barrel manufacture & endcap prototypes

ECAL Concerns:

Electronics delays & personnel. Cost containment measures eg optical links Assurance of funding for critical orders. Sensitivity to \$/CHF exchange rate.

ECAL crystal & module production: v31



CMS RRB 23-10-01 Austin Ball

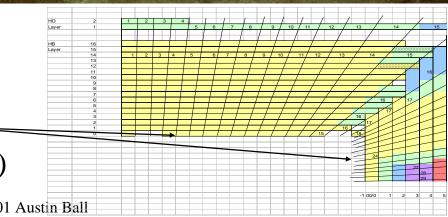
Hadron calorimeter

Barrel: all HB absorber delivered to CERN, optics complete by end 01 HB- assembly near completion in SX5, HB+ complete by end 02. Some HB wedges will be calibrated in beam during 02.

Endcap: HE-1 absorber (here!) and optics expected at CERN by end 01 HE+1 absorber and optics expected at CERN by end 02

CMS RRB-T 200 1-115

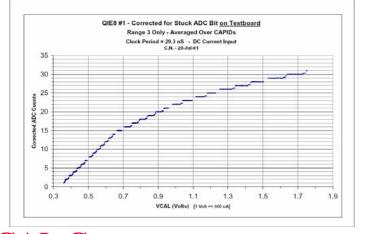
Hadron Calorimeter


Forward (HF):

1'st production wedge a success(VNIITF) Bulk manufacture authorised.

9 wedges expected at CERN by end 2001! Fibre + phototubes reviewed —> order. Organisation & responsibilities of HF project defined

Missing funds covered : 2 --> 1 longitudinal samples in most of HB/HE ______ (effect on physics performance acceptable) CMS RRB 23-10-01 Austin Ball


Hadron Calorimeter

Outer: Approx 1/3 of scintillator tiles machined. Target "ready for installation" in barrel yoke in mid 03

Electronics:

QIE works & is off the critical path

- needs small changes for 40 MHz
- 1 more submission

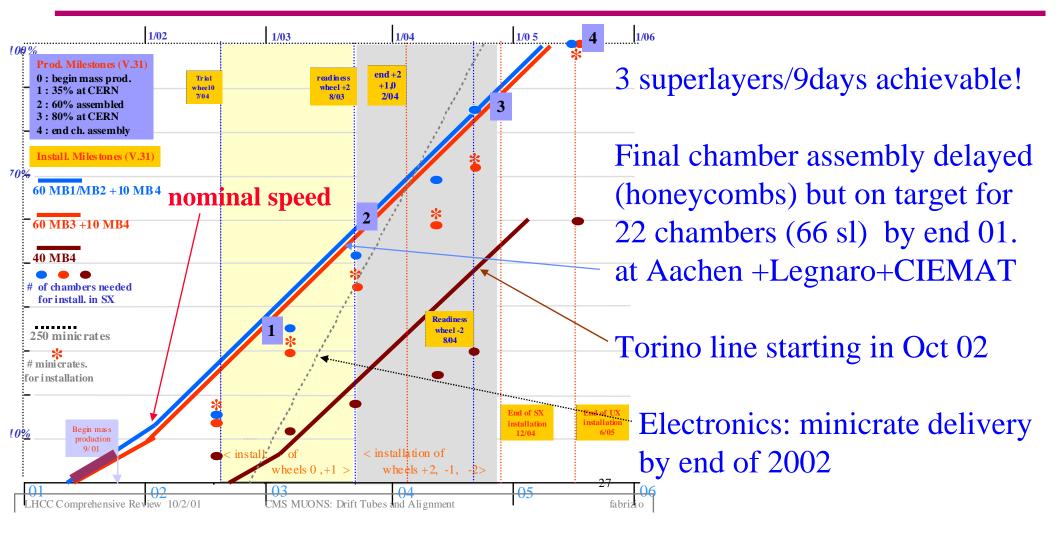
HCAL Concerns: none at present

HPD: correcting remaining faults expect to order soon

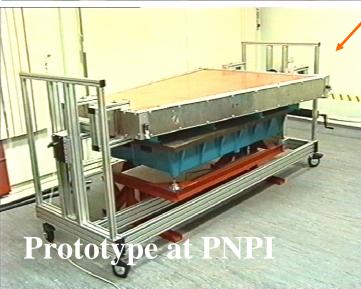
Muon drift tube manufacture

3 sites operational

~30 superlayers assembled at CIEMAT Legnaro Aachen


electrode manufacture being transferred to Russia

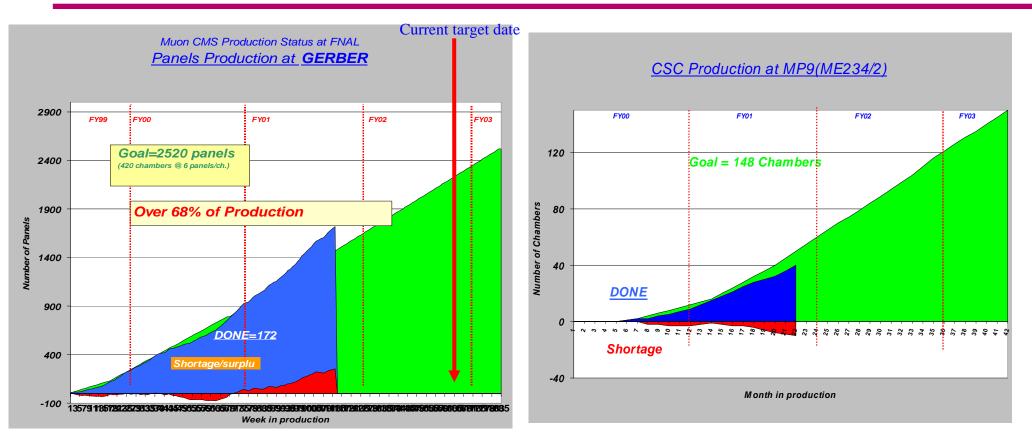
Muon drift tube production:v31



CSC panel & chamber manufacture

FNAL 46/148 CSC's made 38 delivered to FAST sites

U.Florida FAST site


IHEP & PNPI
2 prototypes done prod.start in Nov.

Dubna ME1/1 panels near complete 9 CSC's by end 01. CMS RRB 23-10-01 Austin Ball

CSC panel & chamber production:v31

Electronics:

Anode and cathode front-end electronics in production ALCT (trigger) board re-design complete (on critical path) : ESR in Dec 01

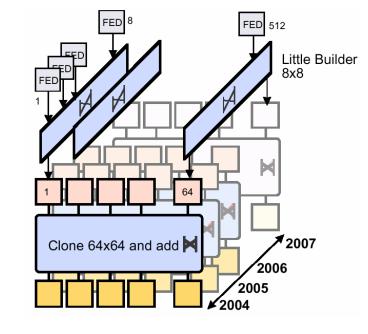
Muon System

Barrel RPC : production starting : oiled bakelite + improved QC procedures.
Endcap RPC: latest prototypes have excellent characteristics.
1 more prototyping round (low noise w/o oil?) → EDR in Jan 02.
design of 1'st station converging (on CMS critical path).
RPC electronics : progressing well, on schedule.

Alignment: delayed MAB prototype due for delivery Dec 01.

Muon System Concerns:

 DT's: electrode pre-production in Protvino & Dubna. achieving target manufacturing rate in 02. Electronics delays (TRACO)
 CSC's: funds for electronics & cables for ME1/1
 RPC's: world capacity for gap production, chamber assembly start-up. funds for services, particularly for endcap. CMS RRB 23-10-01 Austin Ball


Trigger, data acquisition & CPT

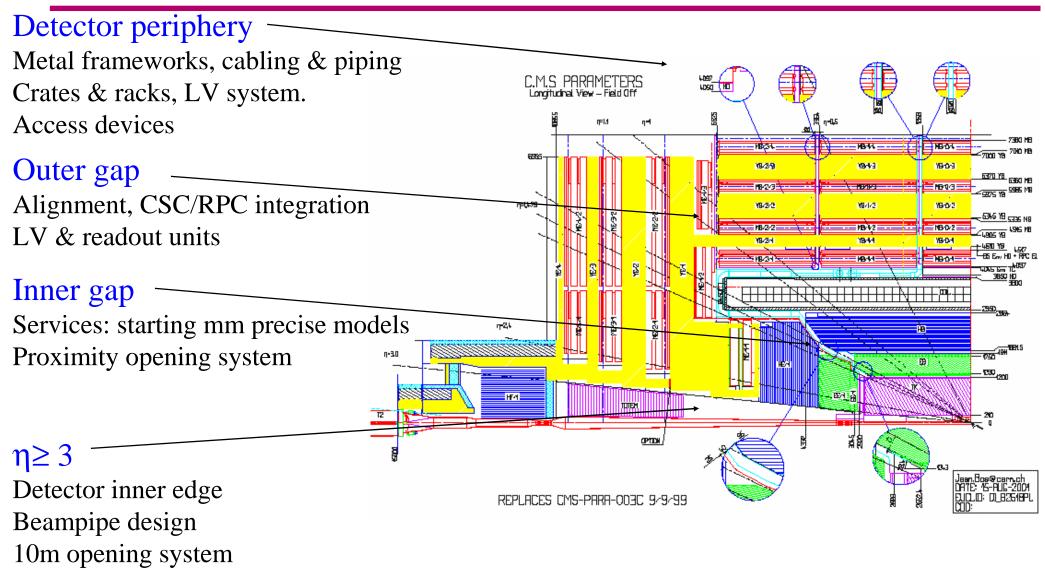
- Trigger: Final, full-function prototypes being constructed & tested Moving towards integration & system tests with sub-det front ends Enhanced processor to be produced for more robust RPC trigger
- DAQ: Results from prototypes & demonstrators have validated design. Modularity introduced for easier upgrading.

EVB staging by event mutiplexing and DAQ slices

- 64 8x8^(*) switches (FED builders. FB) group FED fragments by 8 and divide the time (events) into 8 domains (NoEv Modulo 8). The result is a DAQ made of 8 independent systems (slices).
Each slice consists of 64 RU, a 64x64 EVB, 64 BU and associated FUs. A slice can read up to 12.5 kHz
- Allow easy staging (e.g. in 8 steps) each step runs as an independent system and it may be implemented with a different technology
- Use the 64x64 preseries as basic unit

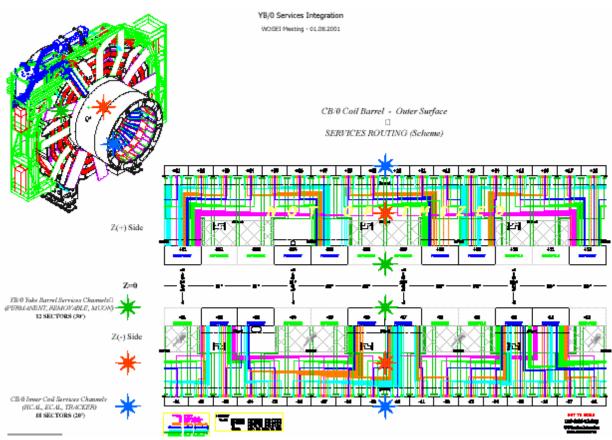
- (*) 8x8 EB is a simplification it is NxM where M is the number of slices

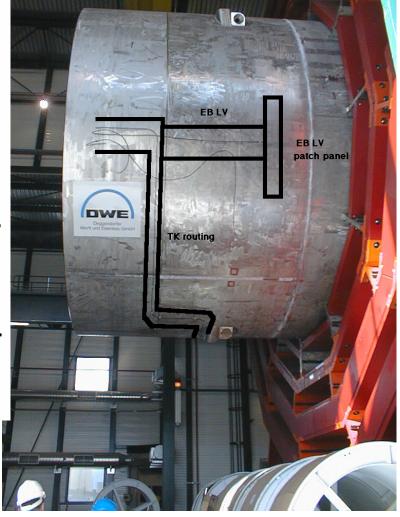
Trigger, data acquisition & CPT


CPT: Large scale event generation exercised with 11 proto regional centres Reconstruction software well advanced & used for HLT studies Effect of staging some sub-detector elements studied. Will investigate backup technologies for Objectivity event store

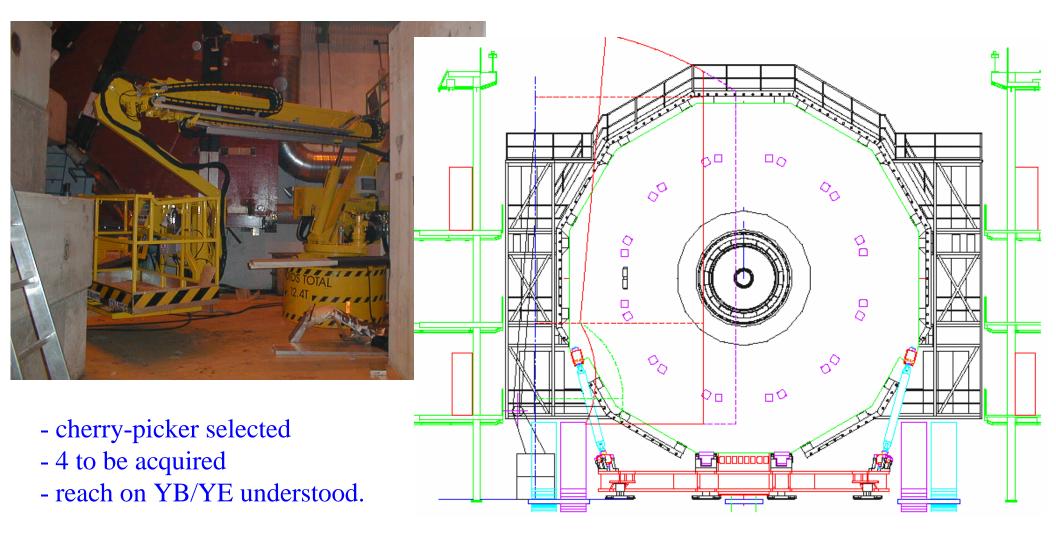
Activity Name	ID			20	02			20	03			20	04			20	05			20	06			20	07	1	2008
Houvity Name		4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	З	4	1	2	3 -	4	1 2
DAQ TDR																											
DAQ TDR submission	D-014					$\mathbf{\nabla}$																ſCF	ו די	L1 I	Mile	sto	nes
Software Baselining for CCS and Physics TDR's																							•		co		
Delivery of baseline core software for CCS & Physics TDR's	O-1039																						 ▼		PR Tri	lS iDA	s
CCS TDR																						\sim					
CCS TDR submission	O-1042																										
Physics TDR																											
Physics TDR submission	O-1071													4	4												
20% Data Challenge																											
20% data challenge complete	0-1044																										
CCS commissioning																											
Delivery of production-grade core software systems	O-1045																										
Fully operational computing systems (20% capacity)	O-006																										
Fully operational computing systems (100% capacity)	O-1048																									•	
LHC schedule																											
Pilot run																			Ľ	F	Pilo	tjrur					
First LHC Run																								Firs	st LH	CR	un

TRIDAS Concerns: CPT Concerns : Trigger + online system commissioning underground Lack of software engineers CMS RRB 23-10-01 Austin Ball


Integration progress & examples


CMS RRB-T 200 1-115

Integration : YB0 cabling


CAD layout verified on actual objects in SX5 *layout of peripheral crates is a critical issue!*

CMS RRB-T 200 1-115

Integration: access devices

Scheduled Reviews: TDR's/EDR's/ESR's

EDR

EB (supermods)	November 01
RPC (endcap)	January 02
Beampipe	February 02
EE (dee's)	June 02
Pixel	June 02
INFRA	Dec 01/ Jun 02

TDR

DAQ TDR	November 02
CCS TDR	December 03
PRS TDR	December 04

- Manufacturing Progress EDR's (MPR's) can be anticipated following Muon Barrel pattern
- PRR's and EDR subcommittees as necessary

ESR

Pixel	December 03
Tracker	March 02
ECAL (VFE)	October 01
ECAL	October 02
HCAL	March 02
Muon Barrel	March 02
Muon Endcap	June 02
RPC's	June 02
Alignment	December 02

Other system reviews:

DCS/DSS	March 03
Safety	Sept 02

Conclusion

• Subdetector manufacture: proceeding at *optimum* speed towards : (*providing shortfalls covered*) working detector by Feb 06 complete detector by Aug 06

In general, progress is encouraging: several concerns remain: ECAL: electronics delays and personnel, orders awaiting funding. Muon : DT assembly rate, funding for ME1/1 electronics, RPC services. TRIDAS,CPT: commissioning timescale, lack of software engineers.

- Schedule & Milestones: new milestone baseline frozen: linked to v31 schedule monitoring of critical sub-system items is in place
- flexibility to respond to & recover from Civ Eng delays included in plan
- increased activities on surface are essential. (more resources)
- Integration
- reasonable progress in major integration hotspots
- subdetectors are entering critical assembly sequence.