# J/w elliptic flow



The J/ $\psi$  meson flows ! ALICE, PRL 119 (2017) 242301

# Audrey Francisco



for the ALICE Collaboration



Heavy quarks participate to the

collective expansion dynamics

### (Re)combined states should inherit their flow



A positive  $J/\psi$  elliptic flow was measured in Pb-Pb collisions at  $\sqrt{s_{NN}} = 5.02 \text{TeV}$  with a significance of  $6\sigma$ 

This favours transport models including charm thermalization

Lower energy measurements do not exhibit a sizeable v<sub>2</sub>

At high p<sub>T</sub> its origin is not quantitatively understood

-0.1 *p*<sub>т</sub> (GeV/*c*) ALI-PUB-138833

Relevant observable for **quarkonium** (re)generation study

### The flow observable

Anisotropic matter distribution around the collision converted into momentum distribution anisotropy

described with a Fourier distribution

2nd coefficient: the elliptic flow  $v_2 = \langle cos[2(\phi - \Psi_{2,R})] \rangle$ origin: early, partonic stages of the system



### Heavy quarks in Pb-Pb collisions at the LHC

early production ( $\tau_c \sim 0.08$  fm/c,  $\tau_b \sim 0.02$  fm/c vs.  $\tau_{QGP} \sim 0.3$  fm/c)  $\rightarrow$  experience the full system evolution

• interact with the QGP : sensitive to the medium properties

same number per binary collision produced in Pb-Pb and in pp

Quarkonium in Pb-Pb collisions : hard probes of the QGP

Two antagonist mechanisms are required to reproduce experimental observations

ITS (SPD) : vertex + EP

Run 2 (2015-2016) : Pb-Pb at  $\sqrt{s_{NN}}=5.02$  TeV  $f = 225 \mu b^{-1}$ 

mm

The

A

 $\Psi_{\rm EP}$ 



 $\log(\sqrt{s_{NN}}) (\text{MeV}/c)$ 

# Analysis strategy

Methods based on event plane determination From detector multiplicities :  $\Psi_n = \frac{1}{arctan}(Q_{n,x}, Q_{n,y})$ 

- Detector resolution computed using the 3 sub-event method
- Deal with non-uniform acceptance

Fit of  $\langle \cos(2\Delta \phi) \rangle$  distribution vs inv. mass with  $\Delta \phi = \phi_{\mu\mu} - \Psi_{2,EP}$ 

Model total flow as





## **Results and interpretation**

- Significant  $v_2$  is observed
  - in 2 rapidity regions
  - and for different centrality ranges

Clear indication of charm quark (re)combination

V0 : Event plane (EP)

T0 : luminosity

 $J/\psi$  study with the muon spectrometer: • forward rapidity : 2.5 < y < 4 J/ $\psi$ • down to  $p_T = 0$ 

 $J/\psi$  study with the TPC: • mid-rapidity : |y| < 0.9• down to  $p_T = 0$ 





### References

Phys. Lett. B178 (1986) 416-422 Phys. Rev. D 64 (2001) 094015 Phys. Rev. C 63 (2001) 054905 Phys. Lett. B 490 (2000) 196–202 J. Phys. Conf. Ser. 509 (2014) 012019 Eur. Phys. J. C 39 (2005) 335-345

Phys. Rev. C 84 (2011) 054912 Phys. Rev. C 86 (2012) 064901 Phys. Rev. Lett. 109 (2012) 072301 Phys. Lett. B 766 (2017) 212-224 Phys. Rev. Lett. 119 (2017) 242301



• Transport models do not reproduce the  $p_T$  dependence...

**ALICE** Preliminary ر م الم p-Pb (0-20%)-(40-100%),  $2.03 < y^{J/\psi} < 3.53$ 0.2 Pb-p (0-20%)-(40-100%), -4.46 <  $y^{J/\psi}$  < -2.96 Pb-Pb 5-20%,  $2.5 < y^{J/\psi} < 4$  $\rightarrow$  Pb-Pb 20-40%, 2.5 <  $y^{J/\psi}$  < 4 0.1 Transport model, 20-40% Pb-Pb,  $2.5 < y^{J/\psi} < 4$ Inclusive  $J/\psi$ **Primordial J**/ψ 6 5 3  $p_{_{
m T}}^{{
m J/}\psi}$  (GeV/c) ALI-PREL-137585

...and in p-Pb collisions a similar  $v_2$  is observed at high  $p_{T}$ , suggesting a common missing mechanism

Thermal charm quark might not be the only source of  $J/\psi$  flow

→ path-length dependence, strong magnetic field, other ?