Search for the exotic decay of the Higgs boson in the $h \rightarrow \alpha\alpha \rightarrow bb\tau\tau$ channel

Tsiakkouri Demetra On behalf of CMS Collaboration

Introduction

- Indirect constraint by ATLAS and CMS on $B(h \to BSM) < 34\% \text{ at } 95\% \text{ CL } [1]$
- **→** Large room left for exotic Higgs decays: $h \rightarrow \alpha\alpha$ • Many models include exotic decays of a SM-like Higgs boson like 2HDM+S
- The results are interpreted in the four types of 2HDM+S without FCNC at tree level [2]
- $B(h \rightarrow SM \text{ particles})$ through BSM physics depends on type, m_{α} and $tan\beta$
- The largest $B(\alpha\alpha \rightarrow 2b2\tau)\approx 0.45$ for type-III with $tan\beta=2.0$

Baseline selection

Three di-tau final states are probe:

- eτ_b, μτ_b, eμ
- For each final state events pass a different trigger: single electron in e_{τ_h} , single muon or muon + tau in $\mu \tau_h$ and electron + muon in $e\mu$
- **Table 1:** Baseline selection criteria on the objects selected in the various final states.

	$\mu au_{ m h}$	$\mathrm{e} au_{\mathrm{h}}$	еμ	
$p_{\mathrm{T}}(au_{\mathrm{h}})$	> 25 GeV	> 25 GeV	-	
$p_{ m T}(\mu)$	> 20 GeV	-	> 24/10 GeV	
$p_{\mathrm{T}}(\mathbf{e})$	-	> 26 GeV	> 13/24 GeV	
$p_{\mathrm{T}}(\mathbf{b})$	> 20 GeV	> 20 GeV	> 20 GeV	
$ \eta(au_{ m h}) $	< 2.3	< 2.3	-	
$ \eta(\mu) $	< 2.1	_	< 2.4	
$ \eta(\mathbf{e}) $	-	< 2.1	< 2.4	
$ \eta(b) $	< 2.4	< 2.4	< 2.4	
Isolation (τ_h)	MVA	MVA	-	
Isolation (μ)	< 0.15	_	< 0.15	
Isolation (e)	-	< 0.10	< 0.10	

Background Estimation

- In the eµ final state, the W + jets background is estimated from simulation.
- The QCD background is estimated from same-sign data. All same-sign processes are subtracted from same-sign data
- A correction is applied to extrapolate the normalization obtained in the same-sign region to the signal region.
- Single top, diboson and tt_{bar} processes estimated from simulation
- SM Higgs boson processes considered as backgrounds

Jet $\rightarrow \tau_h$ fake background estimation

- Backgrounds with jets misidentified as a τ_h candidate are estimated from data using the fake rate method (consist mostly of W+jets and QCD multijets events)
- The probabilities for jets misidentified as a τ_h candidates, denoted f, are estimated from $Z \rightarrow \mu\mu$ +jets events in data separately for each $\tau_{\rm h}$ decay mode and parameterized with as a function of the $\tau_h p_T$
- Events that pass all the selection criteria for the signal region, except that the τ_h candidate fails the isolation condition, are reweighted with a weight f/(1-f) to estimate the contribution of events with jets in the signal region.

References

- ATLAS and CMS Collaborations, "Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV", JHEP 08 (2016) 045, doi:10.1007/JHEP08(2016)045, arXiv:1606.02266.
- G. C. Branco et al., "Theory and phenomenology of two-Higgs-doublet models", Phys.Rep. 516 (2012) 1, doi:10.1016/j.physrep.2012.02.002, arXiv:1106.0034. CMS PAS HIG-17-024, "Search for the exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ leptons"

MC Simulations

Background samples:

- DY + jets, scaled to NLO cross section MADGRAPH (k-factor =1.16)
- W + jets, scaled to NLO cross section MADGRAPH (k-factor = 1.21)
- \bullet tt_{bar} and single top, scaled to NLO cross section, POWHEG
- Diboson WW, WZ, ZZ, VV, scaled to NLO cross section, AMC@NLO
- SM Higgs Decays, scaled to NLO cross section, POWHEG

Signal samples:

- $gg \rightarrow h \rightarrow \alpha\alpha \rightarrow bb\tau\tau$ 10 mass points (15 to 60 GeV)
- VBF and VH di-tau mass distribution set equal to ggF and rescaled

Categorization

We have four categories based on the visible invariant mass of the di-tau lepton and the leading b-jet because the data and the signal have very different distributions

- •The thresholds that define the categories depend on the final states and are shown with the vertical red lines in the figures 1 and 2 below
- First categories have very few backgrounds (1, 2)
- Intermediary categories contain low m₃ signal (2, 3)
- High category is signal free and used to constrain the background (4)

35.9 fb⁻¹ (13 TeV)

Figure 1: Visible invariant mass of the di-tau lepton and the leading b-jet distribution for different m_hypothesis

leading b-jet distribution in the $\mu \tau_{h}$ *final state*

- The visible invariant mass of the tau candidates and of the leading b-jet is well below 125GeV for the signal because 1b jet missing and due to neutrinos in the tau decays
- Background lie at high invariant mass

Selection Optimization

- Selection criteria are applied to optimize the expected limits on the signal cross section times the branching fraction
- \bullet They are based on the transverse mass of the missing $p_{_{\rm T}}$ and the leptons, $m_{_{\rm T}}$, and on D₇ (*Table 2*)

Cut	Category 1	Category 2	Category 3	Category 4	
	еµ				
$m_{\mathrm{e}\mu b}$	< 65 GeV	∈ [65,80] GeV	∈ [80,95] GeV	> 95 GeV	
$m_T(\mathbf{e}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	< 40 GeV	< 40 GeV	< 40 GeV	< 40 GeV	
$m_T(\mu, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	< 40 GeV	< 40 GeV	< 40 GeV	< 40 GeV	
D_{ζ}	> -30 GeV	> -30 GeV	> -30 GeV	> -30 GeV	
	$e au_{ m h}$				
$m_{\mathrm{e} au_{\mathrm{h}}b}$	< 80 GeV	∈ [80,100] GeV	∈ [100,120] GeV	> 120 GeV	
$m_T(\mathbf{e}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	< 40 GeV	< 50 GeV	< 50 GeV	< 40 GeV	
$m_T(au_{ m h}, ec{ec p}_{ m T}^{ m miss})$	< 60 GeV	< 60 GeV	< 60 GeV	< 60 GeV	
	$\mu au_{ m h}$				
$m_{\mu au_{ m h} b}$	< 75 GeV	∈ [75,95] GeV	∈ [95,115] GeV	> 115 GeV	
$m_T(\mu, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	< 40 GeV	< 50 GeV	< 50 GeV	< 40 GeV	
$m_T(au_{ m h}, ec{p}_{ m T}^{ m miss})$	< 60 GeV	< 60 GeV	< 60 GeV	< 60 GeV	
D_{ζ}	_	< 0 GeV	_	-	

Table 2: Optimized selection and categorization in the various final state

• The plots below show with a green vertical line the optimization cuts in $\mu \tau_{h}$ final state

Results

The invariant m₊₊ distributions in the different channels and categories

Conclusions

- Systematic uncertainties related to physics objects and related to background estimation are implemented
- Maximum likelihood fit based on the invariant di-tau mass distributions in different channels and categories

• Upper limits on B(h $\rightarrow \alpha\alpha$) for the most favorable 2HDM+S scenarios are between 6% -24%

• See reference [3]