MISSING TRANSVERSE MOMENTUM RECONSTRUCTION IN 2017 DATA AT THE ATLAS EXPERIMENT

LHCC poster session, 28 February 2018, CERN

Introduction
- Missing transverse momentum (MET) performance is evaluated in 2015 - 2017 data at a centre-of-mass energy of 13 TeV.
- Momentum imbalance could imply:
 - Real MET undetectable particles, new stable particles.
 - Fake MET: misidentification of particles.
- Backgrounds arising from fake MET are important in many measurements and new physics searches.

Missing Transverse Momentum (MET)

- **Transverse momentum imbalance**:
 \[\Delta p_T^{\text{miss}} = \left(\sum \Delta p_T^{\text{lepton}} + \sum \Delta p_T^{\text{muon}} + \sum \Delta p_T^{\text{jet}} + \sum \Delta p_T^{\text{lepton}} + \sum \Delta p_T^{\text{muon}} + \sum \Delta p_T^{\text{jet}} \right) \]

 Hard term: consists of electron, muon, tau, gamma and jet.
 Soft term: purpose of the soft term is to include the momenta of particles not included in the selected hard objects and excluding pile-up activity as much as possible.

 Two soft term reconstruction algorithms:
 - **Track Soft Term (TST):**
 - Soft Term constructed from tracks not included in hard objects, and matched the hard scatter primary vertex. More robust to pile-up but does not contain neutral particles.
 - **Calorimeter Soft Term (CST):**
 - Soft Term constructed from the calorimeter topoclusters not included in the hard objects. Contains neutral particles but less pile-up robust.

Input Jets:
- Jet selection affects MET performance and systematic uncertainties.
- Treatment in MET performance:
 - Using the anti-kt4 algorithm to build jets from either EM-scale topoclusters or PFlow objects.
 - \(p_T \) threshold 20 GeV.
 - Applying a JVT (Jet Vertex Tagger) on the jets to suppress pileup contributions.

Overlap Removal
- Overlapping leptons and jets can cause fake tails in the MET distribution.
- Jet close to electron:
 - Electrons also create jets in the calorimeter so care has to be taken that they are not counted twice. If there is a real jet near the electron we need to make sure we do not also remove it.
 - Fake electrons and pile-up would lead to both miscalibration and double counting.

 1. Real jet close to real electron.
 2. Jet from pileup or electron radiation.
 3. Real jet and fake electron.

Scale
- The balance between leptons and MET
- Ideally calibrated MET is 0 in \(Z \rightarrow \ell \ell \) events.

Resolution
- The width of MET distribution quantifies the performance of MET reconstruction. Each point is obtained by taking the RMS of the MET distribution.

- **Tight MET operating point** raises the jet \(p_T \) from 20 to 30 GeV for \(\eta > 2.4 \).
- **Tight working point** has a smaller dependence on pileup.

- Most pileup dependence comes from forward jets.
- PFlow jets improve the MET resolution.

TST Systematic Uncertainty
- Balance MET soft term with hard term in the transverse plane

- The largest disagreement between simulation and data is the systematic uncertainties in the soft term.
- Average number of interactions per bunch crossing \(\langle p_T \rangle \) increased from 25 to 38 from 2015 to 2017, but the systematic bands remained the same.

References

Fang-Ying Tsai (DESY), for the ATLAS collaboration.