The quest for supersymmetry in final states of 7-11 hadronic jets, 0 leptons, and E_T^{miss} with the ATLAS detector

Supersymmetry (SUSY) is an extension to the Standard Model where the lightest supersymmetric particle (LSP) makes for an ideal dark matter candidate [2].

Search for strongly-produced gluinos, which undergo a cascade decay giving states with many hadronic jets [3] and an LSP which is not strongly boosted, producing moderate missing transverse momentum, E_T^{miss} [4].

1. Searching for Supersymmetry

Signal regions (SRs) are constructed from 7, 8, 9, 10, and 11 inclusive jets (leptons vetoed). Two channels:

- **Jet mass channel**: Jets are reclustered into larger fat-jets [5], uses the total fat-jet mass per event (M_J).
- **Heavy-flavour channel**: 0, 1, and 2 inclusive b-jets are required.

Common Selection
- Lepton veto
- Many central jets (|p_T| > 20 GeV)

Key variables: E_T^{miss}, $H_T = \sum p_T^\text{jets}$, $M_J = \sum_j M_j$

Two analysis streams
- Flavour-select b-jets
- MJSig: makes use of jet reclustering

2. Backgrounds

Major backgrounds:
- Multi-jet background: QCD multi-jets and fully-hadronic top production.
- Leptonic backgrounds.

Large multi-jet background at moderate E_T^{miss} significance.

For each N_j SR of jet multiplicity N_j, an N_j-1 CR is calculated for the $W+\text{jets}$ and hadronic top backgrounds.

3. The Template Method

The signal yields in each SR using 2015 + 2016 LHC data.

Smoking gun for this new physics search: large SR excesses at moderate E_T^{miss} significance coming from SUSY particle production.

No statistically significant excesses are observed, so set exclusion limits on current SUSY models.

4. Results with 2015 + 2016 Data

95% confidence level (CL) exclusion limits are set on different strongly-produced SUSY models: three R-parity conserving (2 shown above), and a fourth model which is an R-parity violating (RPV) [6].

RPV: no LSP, stop undergoes a direct decay into heavy-favour quarks. The multi-jets analysis is sensitive to such a model because its SRs contain some real E_T^{miss}.

5. Exclusion with 2015 + 2016 Data

95% confidence level (CL) exclusion limits are set on different strongly-produced SUSY models:

- A third R-parity conserving model (2 shown above), and a fourth model which is an R-parity violating (RPV) [6].

Exclusion limit of gluino mass extended up to 1.8 TeV.

References

Michael E. Nelson (University of Oxford), for the ATLAS Collaboration