

Measurement of ϕ_s using $B_s^0 \to J/\psi \pi^+ \pi^-$

Xuesong Liu on behalf of the LHCb Collaboration Tsinghua University

1. *CP* violating phase ϕ_s in $B_s^0 \rightarrow J/\psi \pi^+ \pi^$ $b \quad V_{tb} \quad t \quad V_{ts}^* \quad s \quad b \quad V_{cb}$

4. Measurement of ϕ_s with $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ using Run-II data

- Time-dependent amplitude^[6] analysis using 1.9 fb⁻¹ data collected by LHCb during 2015 and 2016.
- Detection effect modelling:
 - ► Decay time resolution is determined with prompt J/ψ samples : 40.9 fs

- ► ϕ_s is a **probe** for **New Physics** (NP) if new particles contribute to the box diagrams.
- ► The $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decay is dominated by the *CP*-odd component which contributes >97.7% at 95% C.L.^[2]. This allows to determine the decay width of the heavy B_s^0 mass eigenstate, $\Gamma_{\rm H}$.

- ► Decay time acceptance is estimated with $B^0 \to J/\psi K^{*0}$ sample using $\epsilon_{\text{data}}^{B_s^0}(t) = \epsilon_{\text{data}}^{B^0}(t) \times \frac{\epsilon_{\text{MC}}^{S^0}(t)}{\epsilon_{\text{MC}}^{B^0}(t)}$
- ► Flavour tagging power: 4.37±0.46 %
- ► Angular and $m_{\pi^+\pi^-}$ efficiencies vary by about ± 10%
- ▶ Preliminary results: fit projections of $m(\pi^+\pi^-)$ and helicity angles

- ▶ It is essential to determine the **initial flavour** of each B_s^0 meson
 - Final states of B_s^0 self conjugated
 - $\triangleright B_s^0$ flavour can **oscillate** with time
- The flavour tagging algorithms provide: decision on the flavour of B candidates (tag) and calibrated mistag probability of B candidates

3. LHCb Run-I results of ϕ_s with $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

- ▶ ϕ_s and $\Gamma_{\rm H}$ are still blinded
- $\cos\,\theta_{\text{J/}\psi}$
- Expected precision to be improved by 8%

- Current combined result is compatible with SM predictions, but there's still room for NP.
- LHCb sensitivity with phase-2 upgrade expected to be < 3 mrad.</p>
- ► Measurement of ϕ_s using $B_s^0 \to J/\psi K^+ K^-$ with Run-II data is also ongoing.

Fit projections of m(π⁺π[−]) and helicity angles^[3].
Red: signal candidates; Black: background component; Blue : total fits.
Time-dependent amplitude analysis using 3 fb^{−1} Run-I data :

 $\phi_s = 70 \pm 68 \pm 8 \text{ mrad}$

• Combined result including $B_s^0 \to J/\psi \phi(1020)^{[4]}$ and $B_s^0 \to J/\psi K^+ K^{-[5]}$ measurements:

 $\phi_s = 1 \pm 37 \text{ mrad}$

Stay tuned for more Run-II results!

Reference

- [1] J. Charles et al., Current status of the Standard Model CKM fit and constraints on $\Delta F = 2$ New Physics, Phys. Rev. D91 (2015) 073007.
- [2] LHCb collaboration, R. Aaij et al., Measurement of resonant and CP components in $\overline{B}_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays, Phys. Rev. D89 (2014) 092006.
- [3] LHCb collaboration, R. Aaij et al., Measurement of the CP-violating phase ϕ_s in $\bar{B}_s^0 \rightarrow J/\psi \pi^+ \pi^-$, Phys. Lett. B736 (2014) 386.
- [4] LHCb collaboration, R. Aaij et al., Precision measurement of CP violation in $B_s^0 \rightarrow J/\psi K^+K^-$ decays, Phys. Rev. Lett. 114 (2015) 041801.
- [5] LHCb collaboration, R. Aaij et al., Resonances and CP violation in B_s^0 and $\overline{B}_s^0 \rightarrow J/\psi K^+K^-$ decays in the mass region above $\phi(1020)$, JHEP 08 (2017) 037.
- [6] L. Zhang and S. Stone, Time-dependent Dalitz-plot formalism for $\bar{B}_q^0 \rightarrow J/\psi h^+ h^-$, Phys. Lett. B719 (2013) 383.

[7] Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, τ-lepton properties as of summer 2016, arXiv:1612.07233.

Contact: xuesong.liu@cern.ch

χ [rad]