

Tune & Chromaticity measurements at GSI What did we learn?

Rahul Singh

Gesellschaft für Schwerionenforschnung GSI

Workshop on 'Extracting information from Electro-Magnetic Monitors in Hadron Accelerators' Geneva May 14th, 2018

This project has received funding from the European Union's Horizon 2020 research and Innovation program under Grand Agreement No. 730871

Geneva, May 14th, 2018

GSI

R. Singh : Tune & Chromaticity at GSI

1

Outline

- Hardware details: BPM system(s) and tune measurement
- Low intensity tune spectra : Bunched beam transverse Schottky
- Head-tail modes : Head-tail mode excitation
- High intensity effects: Direct space charge and Impedances
- Measurements and interpretation: Tune spectra for high intensity beams
- Chromaticity measurement: Head-tail phase shift

GSI Heavy Ion Synchrotron SIS18 (Bp=18Tm): Overview Dipole, quadrupole acceleration <u>cavity 0.8<f<5</u> **Important parameters of SIS18** $1 \rightarrow 92$ (p to U) Ion range (Z) Circumference 216 m Horizontal multi-turn Injection type 11 MeV/u \rightarrow 2 GeV/u Energy range injection Ramp duration $0.1 \rightarrow 1.5 \text{ s}$ extraction **Upcoming FAIR:** $0.8 \rightarrow 5 \text{ MHz}$ Acc. RF ➤ SIS18 used as booster Harmonic 4 (= # bunches)high intensities up to Bunching factor $0.4 \rightarrow 0.08$ 'space charge limit' 4.16 or 4.28 / 3.27 Tune h/v precise control of beam \triangleright parameter for emittance $\approx 10 / 5$ mm injection Trans. size $\sigma_{\rm h} / \sigma_{\rm v}$ conservation & low losses electron cooling acceleration **BPMs: 12 regular + 5 for special** purpose stripline exciter 10 m G S II

Geneva, May 14th, 2018

Tune, **Orbit & POsition System TOPOS** → **Oversampling**

General functionality:

- The beam is excited by band-limited noise or sweep
- Broadband amplification & oversampling of bunches
- Position value for each bunch
- > Fourier transformation gives the non-integer tune Q^{f}
- > Mainly spectrum in baseband i.e. $Q^{f} < 1/2$

R. Singh (GSI) et al., Proc. HB'10, U. Springer et al., Proc. DIPAC'09

Linear cut BPM:

Size: 200 x 70 mm², length 260 mm Position sensitivity:

 $S_x = 0.44 \text{ %/mm}, S_y = 1.6 \text{ %/mm}$

Digital Electronics (LIBERA from I-Tech):

- ➢ ADC with 125 MSa/s
- \blacktriangleright ~9 effective bits
- > FPGA: position evaluation etc.

Remark: For FAIR-SIS100 12 eff. bits ADC

Tune, **Orbit & POsition System TOPOS** → **Oversampling**

General functionality:

- The beam is excited by band-limited noise or sweep
- Broadband amplification & oversampling of bunches
- Position value for each bunch
- \blacktriangleright Fourier transformation gives the non-integer tune Q^{f}
- > Mainly spectrum in baseband i.e. $Q^{f} < 1/2$

R. Singh (GSI) et al., Proc. HB'10, U. Springer et al., Proc. DIPAC'09

Example: One turn = 4 bunches @ 35 MeV/u

- Baseline restoration
- Integration of bunches
 - \Rightarrow position for each bunch
- Tune: FFT on position of same bunch turn-by-turn i.e.1 of 4 per turn
- From **raw data**: bunching factor, ω_{synch} & head-tail bunch shape

Base-band Tune system BBQ→ analog Peak Detection

The beam is excited to betatron oscillation by band-limited noise or chirp:

- > The beam position is determined by analog manner via peak detector measured
- > Filtering of base-band component deliver the non-integer tune Q^f

System designed by M. Gasior (CERN)

'Quadrupolar' BPM:

Size: 200 x 70 mm², length 210 mm Position sensitivity: $S_x = 1.4 \%/\text{mm}, S_y = 2.1 \%/\text{mm}$

GSI

Geneva, May 14th, 2018

BBQ design: M. Gasior BIW'12; GSI measurements; R. Singh (GSI) et al., Proc. HB'12 and DIPAC'13

6

R. Singh : Tune & Chromaticity at GSI

Base-band Tune system BBQ→ analog Peak Detection

The beam is excited to betatron oscillation by band-limited noise or chirp:

- > The beam position is followed using peak detectors i.e. time constants as parameters
- > Filtering of base-band component deliver the non-integer tune Q^f

System designed by M. Gasior (CERN)

Steps of analog processing:

- Peak detection
- Amplification of the difference
- ➢ Filtering
- Feeding to spectrum analyzer or DAQ
- \Rightarrow weighted folding of spectrum to baseband

BBQ design: M. Gasior BIW'12; GSI measurements; R. Singh (GSI) et al., Proc. HB'12 and DIPAC'13

Comparison BBQ versus TOPOS

BBQ:

- Peak detection using analog circuit i.e. no further treatment possible
- High dynamic range
- Result: tune with higher sensitivity
- \Rightarrow 'Easy-to-use' device

TOPOS:

- Oversampled digitization of the BPM signals
- Full time domain information
- Versatile data processing possible
 e.g. picking 1 of 4 bunches, filtering ...
- > Results: Position, tune, longitudinal profile synchrotron frequency ω_s
- \Rightarrow versatile due to full information stored

Remark: Improved position algorithm based on least squares fit brings the sensitivity close to BBQ at SIS-18

A. Reiter and R. Singh, NIM-A, 2018 <u>10.1016/j.nima.2018.02.046</u>

R. Singh : Tune & Chromaticity at GSI

8

Tune Determination at SIS18: Online Display in Control Room

Online display for tune measurement during acceleration Excitation with band-limited noise Time resolution: 4096 turns $\approx 20 - 4.5$ ms Variation during ramp: triplett to duplett focusing

Result:

- ➢ Online display for user
- Sufficient signal strength with moderate excitation
- Minor emittance growth

Beam parameter:

 $10^{10} \operatorname{Ar}^{18+}$, $11 \rightarrow 300 \text{ MeV/u}$ within 0.7 s

→ tune variation by imperfect focusing ramp

P. Kowina et al., Proc. BIW'10; R. Haseitl et al., Proc. DIPAC'11, G. Jansa et al., Proc. ICALEPCS'09

Geneva, May 14th, 2018

Outline

- Hardware details: BPM system(s) and tune measurement
- Low intensity tune spectra : Bunched beam transverse Schottky
- Head-tail modes : Head-tail mode excitation
- High intensity effects: Direct space charge and Impedances
- Measurements and interpretation: Tune spectra for high intensity beams
- Chromaticity measurement: Head-tail phase shift

Basic of Tune Spectrum: Non-interacting Particle Model

Dipole moment d(t) comprises betatron = amplitude x(t) & synchrotron = phase I(t) modulation

Time Domain Mode Structure: Non-interacting Particle Model

Bessel's function as envelope represent unrealistic "hollow bunches". F. Sacherer (in 1978) found sinusoidal Eigen-functions good approximations for parabolic bunches

 $\bar{x}_k(\tau) = \cos(\pi(k+1)\tau/\tau_b) \cdot e^{-i\omega_\xi \tau}$ F. Sacherer: Transverse bunched beam instabilities : Theory

Excitation of Head-tail Modes

R. Singh : Tune & Chromaticity at GSI

Time Domain Mode Structure: Non-interacting Particle Model

R. Singh : Tune & Chromaticity at GSI

14

Tune Spectra at SIS18: Modification with intensity

Higher current: The "global" peak moves to the left. The symmetry of the spectrum is broken.

Low current: Tune spectra has symmetric sidebands due to synchrotron motion.

General questions:

Relevant GSI SIS18 parameters

Parameter	Typical Value
Circumference	216 m
Beam current	$10^7 - 10^{13}$ charges
Injection energy	11.4 MeV/u ($\beta = 0.15$)
Betatron tune $Q_x \& Q_y$	4.31 or 4.17 & 3.28
Synchrotron tune Q_s	0.007 (~ 1.4 kHz)
Trans. size $\sigma_x \& \sigma_y$	610 & 35 mm

Most measurement and tests at prolonged injection flat-top with highest ΔQ performed.

Not high enough for instability

- > Why is the tune spectrum modified at increasing beam current?
- Very practical: Which peak is the coherently shifted tune ?
- What can we learn from this modification for further beam parameters ?

Outline

- Hardware details: BPM system(s) and tune measurement
- Low intensity tune spectra : Bunched beam transverse Schottky
- Head-tail modes : Head-tail mode excitation
- High intensity effects: Direct space charge and Impedances
- Measurements and interpretation: Tune spectra for high intensity beams
- Chromaticity measurement: Head-tail phase shift

Space charge and impedances for transverse motion

Model assumptions: round constant beam & pipe radius, constant or KV distribution,

Interaction of individual particles with each other and the boundaries \rightarrow Incoherent effect

Non-linear force with strong dependence on beam distribution \rightarrow Will lead to a negative tune spread

Interaction of center-of-mass motion with boundaries \rightarrow Coherent effect

$$Z_{\perp}(\omega) = -j \frac{\int_{0}^{L_{d}} (E(s,\omega) + v \times B(s,\omega))_{\perp} ds}{\beta I \Delta}$$

Geneva, May 14th, 2018

Formulas: coherent Tune Shift and incoh. Tune Spread

Model assumptions: round constant beam & and perfectly conducting pipe radius, KV distribution, constant synchrotron tune ...

Transverse impedance
$$Z_{\perp} = i \frac{Z_0}{2\pi (\beta_0 \gamma_0 b)^2}$$

Coherent tune shift
$$\Delta Q_c = i \frac{q I_p R^2 Z_\perp}{2Q_0 \beta_0 W_0}$$

Incoh. tune spread
$$\Delta Q_{sc} = \frac{q I_p R}{4\pi\epsilon_0 c W_0 \beta_0^3 \gamma_0^2 \varepsilon}$$

Relation
$$\Delta Q_c = \Delta Q_{sc} \cdot \left(\frac{a}{b}\right)^2 \stackrel{\leftarrow}{\leftarrow} \text{beam radius}$$

 $\leftarrow \text{pipe radius}$

Space charge parameter $q_{sc} = \frac{|\Delta Q_{sc}|}{Q_s}$ q_{sc} includes effect of longitudinal oscillations

b pipe radius, **R** synchrotron radius, $Z_0 = \sqrt{\mu_0/\epsilon_0}$ **q** ion charge, I_p peak current, Q_0 bare tune W_0 total energy, β_0 velocity, γ_0 Lorentz factor **a** beam radius, ε transverse emittance

Analytical Model: Space Charge Modification of Tune Spectra

- Assumption of analytical description of head-tail modes by M. Blaskiewicz (1998):
- Transverse phase space: KV-distribution
- ➤ Longitudinal 'airbag' phase space: phase → constant momentum only two velocities v_s = ± v_{s0} → synchrotron tune: Q_s = π v_{s0} / (R ω₀ a) Low intensity: spacing of sidebands: ΔQ_k = kQ_s High intensity: spacing of sidebands: $\Delta Q_k = kQ_s$

Findings:

- $\blacktriangleright \mathbf{k} = 0$ it is $\Delta Q_0 = -\Delta Q_c$ i.e. value of shifted bare tune
- \succ k > 0, head-tail modes come closer as $q_{sc} = \Delta Q_{sc}/Q_s$ increases
- \succ *k* < 0 almost constant slope (but larger Landau damping \Leftrightarrow broader and lower spectral lines)

M. Blaskiewisz: Fast head-tail instabilities with space charge, Phys. Rev. Acc.. Beams 1, 044201, (1998)

A. Burov, Head-tail modes for strong space charge, Phys. Rev. Acc. Beams 12, 044202, (2009)

O. Boine-Frankenheim et .al., Transverse Schottky noise spectrum for bunches with space charge, Phys. Rev .Acc.. Beams 12, 114201, (2009)

R. Singh : Tune & Chromaticity at GSI

Measurements: Overview of Beam Parameters

Parameter	Symbols	Value	Value	
Beam	^A Ion ^{q+}	²³⁸ U ⁷³⁺	¹⁴ N ⁷⁺	
Energy	W_{kin}	11.4 MeV/u	11.56 MeV/u	Longitudinal Schottky
No. of particles	N_p	$(1 \dots 12) \cdot 10^8$	$(1 15) \cdot 10^9$	Current Transformer
Emittance	$\varepsilon_x \& \varepsilon_y(2\sigma)$	45 & 22 mm-mrad	33 & 12 mm-mrad	Profile Monitor
Tune	$Q_{x0} \& Q_{y0}$	4.31 & 3.27	4.16 & 3.27	TOPOS or BBQ
Bunching factor	B_f	0.4	0.37]
Synchrotron tune	$Q_{s0} \& Q_{s,meas}$	0.007 & 0.0065	0.006 & 0.0057	TOPOS
Chromaticity	$\xi_x \& \xi_y$	-0.94 & -1.85 set	-1.7 & -2.1 meas.	J

Measurement of all relevant beam parameters

to calculate q_{sc} for horizontal and vertical direction, respectively:

$$q_{sc,x} = \frac{|\Delta Q_{sc}|}{Q_{s,meas}} = \frac{1}{2\varepsilon_0} \cdot \frac{q^2 N_p / B_f}{Q_{s,meas} W_0 \beta_0^2 \gamma_0^2 \varepsilon_{eff,x}}$$

Presented tune spectra are measured by BBQ or TOPOS

effective emittance $\varepsilon_{eff,x} = 1/2 (\varepsilon_x + \sqrt{\varepsilon_x \varepsilon_y Q_{x0}/Q_{y0}})$

R. Singh : Tune & Chromaticity at GSI

GSI

Measurements: Moderate Space Charge Parameter

Beam: U⁷³⁺, 11.4 MeV/u, (1 ... 12) · 10⁸ ions, $Q_s = 0.007 \Leftrightarrow f_s = \frac{Q_s \omega_0}{2\pi} = 1.4$ kHz

Red lines: predicted lines using **measured** beam parameters:

$$\Delta Q_{\pm k} = -\frac{\Delta Q_{sc} + \Delta Q_c}{2} \pm \sqrt{\frac{(\Delta Q_{sc} - \Delta Q_c)^2}{4} + (kQ_{s,meas})^2} \qquad \qquad q_{sc} = \frac{|\Delta Q_{sc}|}{Q_{s,meas}}$$

R. Singh et al., Interpretation of transverse tune spectrum in a heavy-ion synchrotron, Phys. Rev. Acc. Beams 13, 034201 (2013)

R. Singh : Tune & Chromaticity at GSI

Geneva, May 14th, 2018

GSI

Measurements: Strong Space Charge Parameter

R. Singh : Tune & Chromaticity at GSI

Geneva, May 14th, 2018

Comparison of Predicted and Measured Space Charge Parameter

30

20 10

Щ

Power P

С

0.265 0.27 0.275

The values q_{sc} from the depicted measurements with U⁷³⁺ and N⁷⁺

► Measured q_{sc} based on the distance between lines of modes $\mathbf{k} = 0$ and $1 : \delta q_{k,0 \rightarrow 1}$

Findings: > General trend well reproduced i.e. reason for modified tune spectra was found

- > Significant deviation for higher values of q_{sc} (as expected from analytic model)
- \rightarrow Does a better model with high prediction power exists ?

Can such model be applied to SIS18 parameter providing a plots of tune spectra ?

R. Singh et al., Interpretation of transverse tune spectrum in a heavy-ion synchrotron, Phys. Rev. ST Acc. Beams 13, 034201 (2013)

R. Singh : Tune & Chromaticity at GSI

 $q_{sc} \approx 10.8$

 $0285\ 0.29\ 0.295\ 0.3\ 0.305\ 0.31$

Measurements: Determination of coherent Tune Shift ΔQ_c

The coherent tune shift ΔQ_c from the depicted N⁷⁺ spectra and further spectra with Ar¹⁸⁺

For k = 0: $\Delta Q_c = \Delta Q_{k=0}$ i.e. value of coherently shifted tune (important for operating) **Results:**

- > Expected linear scaling coherent tune shifts versus peak beam current I_p
- For value of slope the resistive, effective impedance Z_{\perp} can be determined \Rightarrow estimation of effective beam pipe radius $h \sim 115 \pm 55$ mm & h = 354
- \Rightarrow estimation of effective beam pipe radius $b_x \sim 115 \pm 5.5$ mm & $b_y = 35 \pm 1$ mm R Single et al. Interpretation of transports tune graduation in a barry ion graduation. Place December 2010
- R. Singh et al., Interpretation of transverse tune spectrum in a heavy-ion synchrotron, Phys. Rev. Acc. Beams 13, 034201 (2013)

R. Singh : Tune & Chromaticity at GSI

Geneva, May 14th, 2018

Time Domain Identification of Head-tail Modes

Frequency sweep allows the observation of bunch center oscillations i.e. head-tail modes Beam parameter: $15 \cdot 10^9 \text{ N}^{7+}$ at 11.5 MeV/u, $Q_v = 3.75$, $\xi = -2.1$

Tune spectrogram during sweep:

11 consecutive turn-by-turn center-of-mass recordings:

- Sweep excitation allows excitation of individual head-tail modes
- \blacktriangleright The mode-structure verifies the spectra interpretation
- Remark: Eigen-functions for high intensities could be determined

Determination of Chromaticity from Head-tail Oscillations

Fit of measured head-tail modes to the classical (i.e. without space charge) eigen-functions

$$\bar{y}_k(\tau, n) = \bar{y}_k(\tau) \cdot \cos\left[(\omega_b + k\omega_s)nT_0 + \omega_{\xi}\tau + \varphi_0\right] + y_{offset}$$

Beam parameter: low current $15 \cdot 10^9 \text{ N}^{7+}$ at 11.5 MeV/u

- > Precise determination of chromaticity ξ
- SIS18: Deviation between set & actual value
 & coupling to tune due to uncorrected closed orbit
- \Rightarrow Reliable method but only for offline analysis
- R. Singh et al., Interpretation of transverse tune spectrum in a heavy-ion synchrotron, Phys. Rev. Acc. Beams 13, 034201 (2013)

R. Singh : Tune & Chromaticity at GSI

 \geq

Geneva, May 14th, 2018

 τ_{b}

Bold lines: measured bunch center

Dotted lines: least squares fit with

chromaticity ξ as fit parameter

Determination of Chromaticity from Head-tail Oscillations

Fit of measured head-tail modes to the classical (i.e. without space charge) eigen-functions

For
$$k = 0 \rightarrow \bar{y}_0(\tau, n) = \cos(\pi \tau / \tau_b) \cdot \cos[\omega_b n T_0 + \omega_{\xi} \tau + \varphi_0] + y_{offset}$$

Beam parameter: low current $15 \cdot 10^9 \text{ N}^{7+}$ at 11.5 MeV/u

Results:

- SIS18: Deviation between set & actual value & coupling to tune due to uncorrected closed orbit
- ➢ Position measurement system not appropriate → a dedicated head tail monitor with hybrids better
- Beam losses at changed chromaticity
- > The phase between two locations $\Delta \tau$ is a function of chromaticity as discussed earlier ($\omega_{\xi} \Delta \tau$)
- Phase shift constant between turns

GSI

Tune spectra vs Chromaticity

- Relative amplitudes of excited modes after a frequency sweep as a function of chromaticity
- > Their excitability depends on the exact band/frequency of excitation
- To always have k = 0 mode as the dominant peak, excitation band should be close to ω_{ξ}

Tune Spectra at Higher Energies

During acceleration:

- transverse emittance decreases
- > synchrotron tune Q_s decreases
- $\Rightarrow q_{sc} > 1$ i.e. relevant modification of spectrum

Parameter	SIS18	SPS	RHIC	ANKA
I _{peak} / mA	10	1400	500	12
$\boldsymbol{\varepsilon}$ / mm·mrad	22	0.2	10	0.15
Lorentz fac. γ	1	27	4	100
Tune spr. ΔQ_{sc}	- 0.05	- 0.1	- 0.02	-10^{-4}
Synch. tune Q_s	0.007	0.015	0.0015	0.008
SC para. q _{sc}	~ 7	~ 7	~ 13	~ 0

Typical values at other synchrotrons at injection:

Space charge modification of tune spectra is also relevant for other facilities !

R. Singh : Tune & Chromaticity at GSI

Comparison to Theoretical Predictions

Theoretical investigations by other groups as seen by a beam diagnostics person:

- Head-tail modes discussed for instabilities
- Eigen-frequencies predicted as a function of q_{sc}
- Landau damping stronger for negative modes
- ▶ Bunch length influences $Q_s(\sigma_{bunch}) \Rightarrow$ changes in spectrum
- Chromaticity influences the peak height and width
- But: Seldom plotted in terms of beam observables
 ⇒ Prediction missing for height & width for SIS18

Example: PIC Schottky spectrum by code PATRIC (Boine-Frankenheim et al.)

M. Blaskiewisz: Fast head-tail instabilities with space charge, Phys. Rev. Acc. Beams 1, 044201, (1998)

A. Burov, Head-tail modes for strong space charge, Phys. Rev. Acc. Beams 12, 044202, (2009)

O. Boine-Frankenheim et .al., *Transverse Schottky noise spectrum for bunches with space charge*, Phys. Rev. Acc. Beams 12, 114201, (2009) M. Blaskiewicz, V.H. Ranjbar *Transverse beam transfer functions via Vlasov equation*, Proc., PAC2013, Pasadena p. 1427 (2013).

R. Singh : Tune & Chromaticity at GSI

Geneva, May 14th, 2018

Summary and Outlook

Experimental findings:

- System for **online** tune measurement realized, excitation with acceptable emittance growth
- Measurement of all beam parameters required for correct interpretation of tune spectrum
- ▶ Tune spectra: Eigen-frequencies significantly shifted for $q_{sc} \gtrsim 0.5$ by head-tail modes
- ► Coherently tune shift ΔQ_c measured by shift of k=0 mode \Rightarrow However, k=0 mode is not always the highest peak
 - \Rightarrow spectrum must be interpreted e.g. by recording the mode structure of bunches !
- ► Estimation of tune spread ΔQ_{sc} available \Rightarrow usage for operation and MDs?
- Chromaticity measurement using head-tail phase shift

Lessons and outlook:

- > Do not blame the hardware if the spectrum looks ugly
- \succ Excite individual head-tail mode by harmonic excitation to measure chromaticity \rightarrow Still to compare head tail chromaticity with rf modulation method
- > Implications for tune feedback systems \rightarrow Excite approximately at chromatic frequency to obtain k = 0 mode as dominant peak

Thank you for your attention !

Extra slides

GSI

Geneva, May 14th, 2018

Position Determination: Integration versus least square Fit

- 1. Creation of window for one bunch of *N* samples
- 2. Determine baseline values $B_{l/r}$
- 3. Subtraction $U_{i,L/r} B_{l/r}$ for i = 1...N
- 4. Integration of bunch signal

 $I_{l/r} = \sum_{i=1}^{N} \left(U_{i,l/r} - B_{l/r} \right)$

5 .Position: $x = \frac{1}{S} \cdot \frac{I_l - I_r}{I_l + I_r}$

S is the position sensitivity

R. Singh : Tune & Chromaticity at GSI

Novel: Ordinary least square fit algorithm:

- 1. Creation of window of a single bunch with **N** samples
- 2. Calculation of sum and difference for each sample:
 - $\Sigma_i = U_{i,l} + U_{i,r}$ and $\Delta_i = U_{i,l} U_{i,r}$ for i = 1...N'Plotting' Δ_i versus Σ_i
- 3. Assumption: From $x = \frac{1}{s} \cdot \frac{\Delta}{\Sigma} \Rightarrow \Delta_i = a \cdot \Sigma_i + b$

with $a=x \cdot S$ and b as fit parameter \Rightarrow Least square fit of Δ_i as a function of Σ_i General solution for fit parameter a:

 $a = \frac{\sum_{i=1}^{N} (\Sigma_{i} - \overline{\Sigma}) (\Delta_{i} - \overline{\Delta})}{\sum_{i=1}^{N} (\Sigma_{i} - \overline{\Sigma})^{2}} = \frac{\operatorname{cov}(\Sigma, \Delta)}{\operatorname{var}(\Sigma)} \& b = \overline{\Delta} - a\overline{\Sigma}$ with average value $\overline{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} \Sigma_{i} \& \overline{\Delta} = \frac{1}{N} \sum_{i=1}^{N} \Delta_{i}$ 4. Position x = a/S i.e. from fit value from diff-over-sum Advantage:

- > No baseline reconstruction required
- Robust against offset etc. (here fit parameter b)
 i.e. high common and differential mode suppression
- Easy to implement
- For closed orbit: window over many bunches

Tune Spectra for different experimental Parameter

R. Singh : Tune & Chromaticity at GSI

Geneva, May 14th, 2018

Transverse coupling impedances

- Effect of beam on itself through its environment
- > $Im(Z_{\perp})$ defines the frequency shift of the coherent modes. (Reactive)

Re(Z_{\perp}) defines the growth rate of these modes. (Resistive)

$$Z_{\perp}(\omega) = -j \frac{\int_{0}^{L_{d}} (E(s,\omega) + \nu \times B(s,\omega))_{\perp} ds}{\beta I x}$$

For a perfectly conducting beam pipe, it reduces to

Coherent tune shift

$$\Delta Q_c = -j \frac{q I_p R^2 Z_\perp}{2 Q_0 \beta_0 W_0} \propto \frac{\Delta Q_{sc} a^2}{b^2}$$

$$Z_{\perp} = -j \frac{Z_{0}}{2\pi \beta_{0}^{2} \gamma_{0}^{2} b^{2}}$$
 Characteristic impedance

