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BTF R(Q):
Fraction of the complex response amplitude A(Q) of the beam per driving amplitude

D(Q) of a beam excited at the frequency Q
R(Q) = A(Q)/D(Q)

00 oo 1 Jidy o (Jzy Jy)
R(D) = c. v\ Ty) g7 dg
() p/() /O Q — w;i(Jz, Jy) dJ; ’

e white noise and measure amplitude-phase response
e swap frequency of excitation over range of interest and store amplitude and phase
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Beam Transfer Function:
using an existing LHC BBQ system we record the beam amplitude response while applying a
driving excitation frequency

Injection, 6.5 A
ADT BBQ 0.20 , : : . : — 350

kicker pickup
T beam l
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- Small excitation, small impact on the beam quality — transparent to operation
- LHC measurements need special non-operational conditions due to use of transverse feedback to
damp coherent impedance instabilities — cannot be applied to full beam

- Uncalibrated system — calibration will depend strongly on beam and operational conditions
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N BTF at the LHC I

. gn - —
« Use of existing BBQ system (possibility to have e D o sty

gated or full beam measurements) o L
* On-demand device: need transverse feedback off on
measured beam (to be used in operation will need Fain
Jated system with ADT off on selected bunches) .
» Adaptable BTF excitation amplitude to improve _—
signal-to-noise ratio (S/N) with less impact on beam

quality (high resolution and high S/N required)
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» Use of existing BBQ system (possibility to have

gated or full beam measurements)

* On-demand device: need transverse feedback off on

measured beam (to be used in operation will need
gated system with ADT off on selected bunches)

» Adaptable BTF excitation amplitude to improve
signal-to-noise ratio (S/N) with less impact on beam
quality (high resolution and high S/N required)

» Un-calibrated system: BBQ pick ups and excitation

S
o

Norm. Emittance [pm rad]

amplitudes not calibrated and strongly dependent on

beam properties

« Amplitude of excitation adjusted by impact on

2.9F

beam losses and emittance (to be transparent to the

beam)

BTF at the LHC
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Beam-Beam separation scan between
ATLAS(IP1) and CMS(IP5)
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- Can provide tune measurements very precisely and in very good agreement with multi
particle models
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Coherent mode detection .(Pﬂ!

Coherent mode detection and beam cross talk =@ measure beam-beam parameter (§,,) with
beams in collisions in order to identify coherent modes structures even if Landau damped

BTF on colliding beams after collision optimization (IP1&5)
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RHIC (Super Pacman) 2007 and COMBI simulations
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In the presence of coherent BB modes it is

— consistent with BTF measurements . . . .
challenging to extract incoherent informations
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Amplitude [a.u.]

Amplitude [a.u.]

Chromaticity measurements

BTF measurements for different chromaticity values
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from R. Jones 2015 Beam Dynamics Meeting Diagnostics WS

From Empirical Fit to Theoretical Approach @ DIAMOND:
Use expression for sideband amplitude that is ratio of Bessel functions
As relationship cannot be inverted analytically, use a piecewise fit with a square root and a
Oth order polynomial
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)
Why BTF measurements” .

LHC have shown several coherent instabilities and stability threshold far above the expected values

Predictions of instability thresholds are based on computation of the Landau damping by calculating the

Stability Diagrams (SD) with all ingredients (octupoles, beam-beam ...) BTF= SD-1

Coherent impedance modes
Particle distribution (rise time and coh. tune shift)

(© Oy Ie @)

0 0
Unstable

Detuning with amplitude (tune spread)
Octupoles + beam-beam

y Stabl:e
~05 50 0.5
Re(AQ) le-3

LHC shows still coherent instabilities developing at top energy at different stages of the cycle (emit. growth, losses)

0.0

1.0

Are we missing some important contributions in our prediction? What is the real stability area?
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BTF = Inverse of Stability diagram
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Measurements and Analysis of the Transverse Beam Transfer Function (BTF) at the SIS 18 Synchrotron
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BTF = Inverse of Stability diagram
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Several BTF settings were tried in order to improve signal to noise ratio however the only
way to improve the SD reconstruction was to average the signal over several acquisitions

in the same conditions

Direct BTF .
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- For each set-up we acquired several measurements in the same configurations

- The average and the RMS of the different BTF acquisitions are computed
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» Delay between excitation steps = removes “fake spread” effect after tune excitation (dependency
on excitation direction)

« Adapting BTF excitation amplitude to improve signal to noise ratio with less impact on beam
quality for reconstruction of SD (high resolution and high S/N required)

— 2016 Mquurements
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y Data treatment 2: Sweep direction .(Pﬂ-

» Delay between excitation steps = removes “fake spread” effect after tune excitation (dependency
on excitation direction)

« Adapting BTF excitation amplitude to improve signal to noise ratio with less impact on beam
quality for reconstruction of SD (high resolution and high S/N required)

— 2016 Mquurements

— BTF Measurements (4 — Fit
— Fit x x BTF Measuremen ts

— Semi-Analytical
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Amplitude [a.u.]

N

Synchrotron sidebands appear in the BTF amplitude and phase jumps (at £n - Qs from tune)
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« The loops (and deformations of it) are always present in measurements due to Q’

» High octupole current: deformation of the SD and loops —> sidebands included in the transverse
spread
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Amplitude (Q)
BTF (complex) <

Phase (Q)
SD « 1/BTF =A-1e¢

Fitting method allows to compare measurements
respect to models (reference case, i.e. octupoles)

int =Po~+ P1 (Qanalyt — Qo)
Afit =p2/p1- Aanalyt

po = Tune

p1 = Tune spread factor respect to a reference case
independent from calibration factor, (phase slope)
p2 = Amplitude factor:

calibration, proportionality constant
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int =PpPotpr (Qanalyt — Qo)

Afip = p2/ p1 - Aanalyt Reconstructed Stability Diagram
with averaging and fitting method

le—4
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x x BTF Measurements
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Tune spread p1=1.71

(10 A octupole current@injection energy)
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int =Po+Pp1- (Qanalyt — Qo)

Afir = p2/p1- Aanalyt Reconstructed Stability Diagram
with averaging and fitting method

3 [ -

— Fit

5 x x BTF Measurements
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Stability Diagrams can be
reconstructed and tune spread |
extracted
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An e-lens is used at RHIC to compensate beam-beam tune spread
Fitting method applied to RHIC data in different beam-beam configurations
BTF data have been used to reconstruct stability diagram:

clean reconstruction of SD from raw data

tune spread has been evaluated with
fitting function using an arbitrary initial
tune spread — improved model needed

Apply to other data/machines:

e-lens compensation of tune spread
with reduction of the Stability Diagram
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RHIC data courtesy of W. Fischer
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Tune spread given by Landau octupoles and lattice non linearities
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For the largest octupole strength (26 A) larger spread in the horizontal plane, smaller in the
vertical plane



M@ single beam: LHC stability at ~ (Gf»
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Tune spread given by Landau octupoles and lattice non linearities
Horizontal plane Vertical plane 2015 MD
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A Octupole scan at injection: %E/RW
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wownonye —— @valuation of the tune spread SZ~

= Fitting method to compare measurements and
 Model (Wrt 65 A) expectations from model (tune spread factor)
I m:zzaiﬂz:zc |= Case with no octupoles: consistent with optics
measurements in the 2015 of spread from magnets
non-linearities (equivalent to 5 A octupole spread)
= Linear trend reproduced
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case: 6.5 A
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Octupole current [A]



(W Octupole scan at injection: ciRn

ot @valuation of the tune spread SZ
= Fitting method to compare measurements and
= Model wri65A) | | | expectations from model (tune spread factor)

&—0® BTF measurements H
5/|@—e BTF measurements V

|= Case with no octupoles: consistent with optics
measurements in the 2015 of spread from magnets
non-linearities (equivalent to 5 A octupole spread)
= Linear trend reproduced

Losses observed in the vertical plane
correlated with octupole current changes
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Losses very low=> negligible impact on beam
lifetimes and collimation system
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A Octupole scan at injection: CE/RW
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wownonye —— @valuation of the tune spread SZ~

= Fitting method to compare measurements and

— Model (w.r.t. 6.5 A)

)]

| ®—® BTF measurements V

Tune spread factor

case: 6.5 A

0 5 10 15 20 25 30
Octupole current [A]

— Result:

losses observed as a function of octupole

strength due to a reduction of DA —

Increasing the tune spread is beneficial

for Landau damping as long as any
diffusion mechanism is not present

expectations from model (tune spread factor)

¢—¢ BTF measurements H |= Case with no octupoles: consistent with optics

measurements in the 2015 of spread from magnets
non-linearities (equivalent to 5 A octupole spread)

= Linear trend reproduced
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BE(Pf\@l Frequency distribution at injection CE/RW
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B(PF\@ Frequency distribution at injection

SRR with linear coupling
Effect of linear coupling: coupled motion between H-V plane
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B(PF\@ Frequency distribution at injection
with linear coupling
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Effect of linear coupling: coupled motion between H-V plane
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.(Pﬂ- Impact of linear coupling on Landau CERN
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(gl Octupole scan at injection energy \{&N
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Octuple scan with fixed linear coupling value (C-~0.006)
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Asymmetric H - V behavior: larger spread in the horizontal than in the vertical plane

Horizontal plane much more affected by tune spread increase w.r.t. vertical plane



.(l)ﬂ! Measured tune spread: octupoles and RE/RW
linear coupling SZ

FEDERALE DE LAUSANNE

Fitting function method applied to measure tune spread from BTFs (w.r.t to an analytical reference

case of SD with 4 A octupole current)
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Quantitative comparison w.r.t to expectations (MAD-X + PySSD with and without linear coupling)

- BTF measurements well agree with expectations!



BE(PA\W Tune shift and spread due to beam-beam
long range interactions
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B’ Tune spread due to beam-beam long (iE/RW
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— Other mechanisms should play a role: linear coupling
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¢ Effect of excitation on beam stability QE/RW
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Q’ ~ 10 units, Oct. current 510 A BTF Exc. Amplitude = 2- 1040
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Instability B2 H after (small) BTF excitation (in order of 10-4 beam RMS size) in the same
plane (with a rise time of ~ 2 s)

Never observed instability triggered by BTF excitation (without excited coherent modes)
Increase of 30% impedance in the 2017 = (closer to stability limit?)

Simulations show loss of Landau damping of impedance head-tail mode m=-1 at -Qs



.(Pﬂ- BTF induced instabilities when at CiE/RW
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- Machine Development studies are planned to continue the
understanding of instability and BTFs in the LHC

- BTF GATED system required for a possible use in operation and have
clear signals



P Summary )
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- BTF is a powerful tool: high precision tune and chromaticity measurements, coherent modes detection
(beam-beam interactions) and measurements of beam stability (main purpose in the LHC)

- Fitting method allows to compute tunes, tune spread and finally the stability diagrams from measured
data using the phase signal which is not dependent on the BBQ calibration

- System in LHC showed good agreement between models and measurements in the LHC for tunes,
chromaticity and tune spread

Many improvements of the system in 3 years fundamental to collect the experimental data:
signal averaging, delayed excitation, amplitude modulation, gated system for operational use
Chromaticity correlation could be used for online Q’ measurements (need further investigation)
Fitting method works well and gives the needed informations quantitatively

- For the first time stability expectations have been compared to LHC data giving enormous insights in
the observed instabilities

- In the presence of strong impedance BTF excitation can trigger beam instabilities: very important
insight in LHC stability studies but not obvious how to use such device operationally



