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Motivation

1st order

rigid dipolar centroid oscillation:
Newton’s third law,
actio = reactio

−→ no influence from direct
space charge (SC)

2nd order

quadrupolar envelope oscillation:
defocused by transverse
space charge

−→ frequency of envelope
oscillation decreases with SC

=⇒ measure direct space charge through frequency shift of beam size
oscillations about matched σx,y
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Outline

Content of this talk:
1 Introduction

spectrum of a quadrupolar pick-up

2 Equipment in Injector Rings: Status and Plans
3 Applications and Ongoing Studies

quadrupolar frequency response to characterise high-brightness PS
beams
−→ influence of chromaticity
−→ coherent dispersive mode

PS injection: transfer line mismatch
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1. Introduction



Schematic Quadrupolar Pick-up

modified image taken from [1]

Evaluating the four pick-up signals as

(L+R)− (T +B)

results in the time signal

SQPU(t ) ∝〈x2〉−〈y2〉 =σ2
x (t )−σ2

y (t )+〈x〉2(t )−〈y〉2(t ) . (1)
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Some Historical Perspective

QPU in time domain for emittance measurements:
1983, R. H. Miller et al. at SLAC [2]
2002, A. Jansson at CERN in PS [3]

QPU in frequency domain for emittance measurements:
2007, C.Y. Tang at Fermilab [4]

QPU in frequency domain for space charge measurements:
1996, M. Chanel at CERN in LEAR [5]
1999, T. Uesugi et al. at NIRS in HIMAC [6]
2000, R. Bär at GSI in SIS-18 [7]
2014, R. Sing et al. at GSI in SIS-18 [1]

=⇒ all far away from coupling and coasting beams

CERN’s proton synchrotrons peculiar:
1 close to coupling =⇒ quadrupolar mode frequencies change
2 bunched beam
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GSI results at SIS-18

QPU measurements at GSI by R. Singh, M. Gasior et al. [1]

particle type N7+

Eki n (MeV/u) 11.45
Ibeam (mA) 0.6 – 6
εx ,εy (mm-mrad) 8, 12.75
Qx0 ,Qy0 4.21, 3.3

Q
f
x =̂Qx

Q
f
y =̂Qy

Qcoh =̂Q±

−→ far away from coupling resonance
−→ coasting beam =⇒ sharp envelope peak
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Far Away vs. On the Coupling Resonance

2 eigenmodes for coherent quadrupolar betatron oscillation:

far away from coupling

(a) horizontal mode (b) vertical mode

Relation of mode frequencies to
incoh. KV space charge tune shift:

Q± = 2Qx,y

−
∣∣∣∆QKV

x,y

∣∣∣(3− σx,y

σx +σy

)
/2

(2)

full coupling

(a) breathing mode (b) antisym. mode

Relation of mode frequencies to
incoh. KV space charge tune shift:

Q+ = 2Q0 −
∣∣∣∆QKV

x,y

∣∣∣ (3a)

Q− = 2Q0 − 3

2

∣∣∣∆QKV
x,y

∣∣∣ (3b)

(assuming round beams, Qx,y ≡Q0)
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Peculiarity 1: Near Coupling Resonance

At vanishing lattice coupling, keep constant incoherent SC tune shift and
fixed Qx . Vary Qy for a coasting round beam:

analytic expression
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Peculiarity 2: Bunched Beam Envelope Signal

Assumption:
synchrotron motion much slower than betatron motion, Qs ¿Qx0,y0

−→ 3D RMS envelope equation (Sacherer) decouples to 2D + 1D
=⇒ for a given longitudinal bunch slice, the coherent transverse

quadrupolar oscillation depends on local line charge density λ(z),
longitudinal motion is quasi-stationary and independent (see e.g. [6])
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Figure: sketch of envelope detuning scaling with local line charge density
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1. Introduction:
QPU Spectrum Simulations



Coasting: KV Beam
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Coasting: KV Beam with Dispersion

bunched transv. distr. synchrotron motion dispersion chromaticity
no KV (uniform) no yes no
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Coasting: RMS-equiv. Gaussian Beam with Dispersion
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Bunched KV Beam
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2. Equipment in LHC Injectors:
Status and Plans



PS: Quadrupolar Pick-up

Stripline pick-up PR.BQL72 is part of the BBQ system:

courtesy Tom Levens

Currently recabled to quadrupolar mode (first time in 2016):

+ −
+

−

(a) dipolar
=⇒ + +

−

−

(b) quadrupolar

13 of 29 Adrian Oeftiger QPU Studies for SC Measurement



PS: Transverse Feedback (TFB) as Quadrupolar Kicker

Kicker in section 97 is part of the new PS transverse feedback system:

courtesy Guido Sterbini

Since last week:
source signal for quadrupolar excitation comes from BBQ system
−→ new dedicated card BQL72_Q to control excitation parameters

separately from dipolar tune measurements
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Plans

Pick-up side:
in PS, upgrade BQL72 with 3 channel frontend,
simultaneously extract

dipolar signals 〈x〉 and 〈y〉,
quadrupolar signal Q

−→ technical stop in June 2018
in PSB, make use of brand-new (2018) stripline pick-ups
−→ install 3 channel frontend to include Q channel
−→ during 2018
in SPS, upgrade existing BBQ system with Q channel
−→ install new 3 channel frontend during LS2

Kicker side:
separate quadrupolar excitation signal path from rest of system
−→ possibility to operate dipolar feedback system in closed loop +

simultaneous quadrupolar excitation (these coming weeks)
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3. Application:
quadrupolar beam transfer function (2017)



Goal of Study

Motivation
In the context of strong space charge regime with LHC Injectors
Upgrade beam parameters: determine beam brightness (or incoherent
space charge (SC) tune shift) directly via coherent quadrupolar modes

Starting from nominal LHC beam-type set-up:
(large) natural chromaticity: Q ′

x =−0.83Qx and Q ′
y =−1.12Qy

lattice is usually strongly coupled via skew quadrupoles to stabilise
slow horizontal head-tail instabilities
−→ decouple lattice during envelope measurements
=⇒ only space charge coupling in envelope tunes

−→ measure quadrupolar beam transfer function to learn about space
charge
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Experimental Set-up

Ingredients:
small time window of 15 ms with decoupled optics
chirped quadrupolar excitation of beam via transverse feedback:
external waveform generator connected to kicker plates

12 ms long frequency sweep with 1 ms return
harmonic h = 5 with frequency range 2.19 MHz to 2.4 MHz

single bunch in PS with a factor 5 smaller incoherent SC tune shift
compared to currently operational LHC beams, off coupling

intensity N ≈ 0.3−0.4×1012 ppb
transverse emittance εx,y ≈ 2.3mmmrad

average betatron function βx ≈βy ≈ 16m
average dispersion Dx ≈ 3m

momentum deviation spread σδ ≈ 1×10−3

bunch length BL ≈ 180ns
synchrotron tune Qs = 1/600 = 1.67×10−3

KV space charge tune shift ∆QKV
x,y ≈ 0.02
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Quadrupolar Excitation: Chirp

excitation signal
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distinct peaks around machine tunes f < 0.25 frev

frequency bands around twice the machine tunes
(disregard the constant frequencies, due to instrumentation)
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Measured Quadrupolar Beam Transfer Function
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Observations in Spectrum
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Observations:
significant peaks around Qx

−→ dispersive coherent mode?
−→ influence of chromaticity?
envelope band below 2Qx clearly visible
B would infer ∆QKV

x,y ≈ 0.04 (factor 2 too large!)
−→ difficult to extract maximum shift, always many peaks (chromaticity?)

20 of 29 Adrian Oeftiger QPU Studies for SC Measurement



Tune Scan: BTFs Averaged over Shots
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... simulations?



Dispersive Coherent Mode

bunched transv. distr. synchrotron motion dispersion chromaticity
yes KV (uniform) yes yes no

0.0 0.1 0.2 0.3 0.4 0.5
Fractional quadrupolar tune

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Sp
ec

tra
l a

m
pl

itu
de

Qx Qy 2Qx 2Qy

Spectrum of σ2
x − σ2

y
experimental parameters (here
N = 4×1011 ppb)
evident quadrupolar betatron
bands below 2Qx,y

coherent dispersive mode
slightly below Qx (shifted by
space charge!)

−→ however, only one peak is seen
as opposed to experiment...
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Including Chromaticity

bunched transv. distr. synchrotron motion dispersion chromaticity
yes KV (uniform) yes yes yes

0.0 0.1 0.2 0.3 0.4 0.5
Fractional quadrupolar tune

0.000

0.001

0.002

0.003

0.004

0.005

Sp
ec

tra
l a

m
pl

itu
de

Qx Qy 2Qx 2Qy

Spectrum of σ2
x − σ2

y
experimental parameters (here
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evident quadrupolar betatron
bands below 2Qx,y

coherent dispersive mode
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space charge!)

−→ however, only one peak is seen
as opposed to experiment...

−→ including natural chromaticity (Q ′
x =−0.83Qx and Q ′

y =−1.12Qy):
broadens dispersive peak (here FFT undersamples sidebands)
produces additional peaks, shifted dominant peak

NB: simulations ran with 10×106 macro-particles on 150 longitudinal slices across the RF bucket (≈ 80m)
where space charge is solved on 128×128 grids (no significant transverse difference between 2.5D / 3D PIC)
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Detailed Dispersive and Betatron QPU Spectrum
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Sussix tune analysis reveals regular sideband structure around
dispersive mode (blue peaks)
chromaticity also affects betatron spectrum, additional peaks distort
betatron band (e.g. vertical extending beyond 2Qy)
−→ with finite chromaticity, measuring betatron band width seems

intricate
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just giving it a try... Measurement vs. Simulation
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horizontal quadrupolar betatron band below 2Qx ≈ 0.36: similar width
vertical quadrupolar betatron band (different Qy in simulation and
experiment): similar width

−→ chromaticity seems to explain larger width of betatron bands (∼factor 2)
w.r.t. computation from 2D envelope equations (without dispersion)
coherent dispersive mode peak at same frequency
−→ width and sidebands closer to measurements (than without chromaticity)
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3. Applications:
PS injection oscillations (2018)



Goal of Study

Motivation:
PSB transfer line to PS is optically mismatched in terms of Dx

LHC Injectors Upgrade requires much larger longitudinal emittances
εz (from present 1.3 eVs towards 3 eVs)
−→ momentum spread σδ increases
=⇒ corresponding dispersion mismatch may lead to large transverse

emittance growth of 50 % and more
−→ LIU PS beam dynamics meeting presentation ↗

=⇒ Quadrupolar spectrum of injection oscillations could be useful?

Two scenarios:
1 optics A: nominal PS lattice (βx,y matched, Dx mismatched)
2 optics C: optimised PS lattice (βx,y mismatched, Dx matched)

−→ dipolar injection oscillations corrected! RF off!
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https://indico.cern.ch/event/710562/contributions/2927838/attachments/1613787/2563615/blowup_studies.pdf


Injection Oscillations: QPU Spectograms

optics A

courtesy Vincenzo Forte

optics C

courtesy Vincenzo Forte

−→ preliminary data from last week, to be investigated in detail!
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Summary

In conclusion:
coherent dispersive mode identified as strong quadrupolar spectral
component (especially for injection oscillations)
chromaticity significantly impacts quadrupolar spectrum:

broadens betatron bands =⇒ complicates estimation of ∆QKV
x,y

shifts coherent dispersive mode and creates sidebands

rich information in QPU spectrum =⇒ very powerful diagnostic tool for
space charge and dispersive mismatch at injection
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Outlook

Next steps for ongoing studies:
better understand the injection oscillations and spectrum for the
dispersive mismatch
repeat quadrupolar BTF with h = 1 excitation
estimate ∆QKV

x,y with vanishing chromaticity in PS?

Figure: last week: Q ′
x =−0.045Qx and Q ′

y =−0.271Qy in the PS
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Thank you for your attention!
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Incoherent KV Tune Shift

The uniform (Kapchinskij-Vladimirskij / KV) beam distribution has all
particles at same incoherent space charge tune shift:

∆QKV
x,y

.=− K SCR2

4σx,y (σx +σy )Qx,y
(4a)

.= 1+σx,y /σy,x

2Qx,y
Λ (4b)

Connect Λ quantity to general envelope mode expressions in terms of
observables:

Λ=
Q2++Q2−−4(Q2

x +Q2
y )

4+3(σx /σy +σy /σx )
(5)

(Gaussian tune spread = 2x the RMS-equivalent KV tune shift!)

space charge perveance K SC .= qλ

2πε0βγ2p0c
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TFB: Schematic Plan
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TFB: Impact of Orbit

Set up a local bump through the TFB and measure the induced beam
signal on the plates (effectively a BPM):

By scanning the orbit location one can minimise the difference signal:
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TFB: Static Quadrupole on h = 1

TFB pulsing at frev becomes a static quadrupole to the beam
varying the phase of the pulsing RF quadrupole changes the tune
impact
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TFB: Quadrupolar Chirp

top and bottom plates oscillate together in anti-phase to right and
left plates of transverse feedback
−→ quadrupolar RF excitation (anti-symmetric mode)
frequency swept during BTF measurement: 2.19 MHz to 2.4 MHz
−→ harmonic 5 to 5.5 (PS revolution frequency frev = 437kHz)
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Extracting the Beam Response...

(a) FFT across up-chirp time is not
such a useful idea...
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(b) ... instead project and band filter
along local excitation frequency
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Approach: In-phase and Quadrature Components

Take
a) QPU time signal SQPU(t )

b) excitation signal Sexc(t ) (sine wave with increasing frequency)
c) 90 deg shifted excitation signal Cexc(t ) = Sexc(t )|φ→φ+90deg

Assume immediate beam response to chirp:
1 correlation: find excitation start in SQPU(t ) by correlation with Sexc(t )

2 demodulation of measured QPU time signal into

I (t ) = SQPU(t ) ·Sexc(t ) (in-phase component)
and Q(t ) = SQPU(t ) ·Cexc(t ) (quadrature component)

3 band filter original SQPU(t ) around time-varying excitation
frequency by low pass filtering I (t ) and Q(t )

4 amplitude of beam response along chirp amounts to
√

I 2(t )+Q2(t )
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Simulations for Tune Scan

Simulations with KV beams for N = 1.2×1012 confirm theory:
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−→ r.m.s. equivalent Gaussian beams (with same σx,y like KV beams)
exhibit same quadrupolar tunes as KV

B Gaussian spectra broaden quickly
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Intensity Scan

With slightly split tunes, approach full coupling by increasing bunch
intensity:
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=⇒ scan space charge tune shift ∆QKV
x,y and verify theory
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Envelope Equations

Envelope equations of motion (e.o.m.)

r ′′
x +Kx (s)rx −

ε2
x,geo

r 3
x

− K SC

2(rx + ry )
= 0 , (6a)

r ′′
y +Ky (s)ry −

ε2
y,geo

r 3
y

− K SC

2(rx + ry )
= 0 (6b)

for transverse r.m.s. beam widths rx,y =σx,y have equilibrium

Q2
x

R2 rx,m−
ε2

x,geo

r 3
x,m

− K SC

2(rx,m+ ry,m)
= 0 , (7a)

Q2
y

R2 ry,m−
ε2

y,geo

r 3
y,m

− K SC

2(rx,m+ ry,m)
= 0 (7b)
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Linear Perturbation in Smooth Approximation

Constant focusing channel

Kx,y = 1

β2
x,y

=
Q2

x,y

R2 = const (8)

gives linearised e.o.m. for perturbation around equilibrium r = rm+δr

d 2

d s2

(
δrx

δry

)
=−

(
κx κSC
κSC κy

)
︸ ︷︷ ︸

.=(κ)

·
(
δrx

δry

)
(9)

with


κx,y = 4

Q2
x,y

R2 − 2σx,y+3σy,x

σx,y
κSC

κSC
.= K SC

2(σx+σy )2

(10)
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Definitions

Coupling Parameter

D
.= κy −κx

2κSC
= 4

Q2
y −Q2

x

K SCR2
(σx +σy )2 + 3

2

(
σy

σx
− σx

σy

)
(11)

Rotation Into Decoupled Eigensystem

tan(α) = 1

2κSC

[
κy −κx +

√
4κ2

SC+ (κy −κx )2
]

= D +
√

1+D2

(12)
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Incoherent Tune Shifts

KV Space Charge Tune Shift

∆QKV
x,y =− K SCR2

4σx,y (σx +σy )Qx,y
(13)

with K SC .= qλ

2πε0βγ2p0c
(14)

R.m.s. Equivalent Gaussian Space Charge Tune Spread
linearised Gaussian e-field = twice r.m.s. equivalent KV e-field

=⇒ max
{
∆Qspread

x,y

}
= 2∆QKV

x,y (15)
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Gaussian vs. R.m.s. Equivalent KV
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Figure: Electric fields in r.m.s. equivalent distributions with same σx,y
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Incoherent Tunes and R.m.s. Equivalence

Incoherent tune spread of a coasting, transversely Gaussian distribution:
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Quadrupolar Mode Formulae

Quadrupolar Mode Tunes (General Formula)

Q2
± = R2

2

[
κx +κy ±

√
4κ2

SC+ (κy −κx )2
]

(16)

= 2(Q2
x +Q2

y )− K SCR2

(σx +σy )2

[
1+ 3

4

(
σy

σx
+ σx

σy

)
∓
p

1+D2

2

]
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Quadrupolar Mode Formulae

Off-resonance D À 1 With Round Beam

Q+ = 2Qy − 5

4
|∆QKV

y | , (17a)

Q− = 2Qx − 5

4
|∆QKV

x | . (17b)

for Qy >Qx otherwise exchange x ↔ y
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Quadrupolar Mode Formulae

On-resonance D ≈ 0 With Round Beam

Q+ = 2Q0 −|∆QKV| , (18a)

Q− = 2Q0 − 3

2
|∆QKV| . (18b)

for Q0
.=Qx =Qy and ∆QKV .=∆QKV

x =∆QKV
y
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QPU Simulations in SPS

simulation parameters:
machine: SPS at injection
γ= 27.7

εx = εy = 2.5mm−mrad
Nb = 1.25×1011

512 – 2048 turns
2.6×105 macro-particles
longitudinally matched Gaussian-type distribution
betatron mismatch by 10% in both x, y

=⇒ injection oscillations
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QPU Spectrum: Only Betatron Mismatch

need beam mismatched to both βx ,βy to see clear peaks
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=⇒ 2Qx0, 2Qy0 from undepressed envelope oscillations
=⇒ including synchrotron motion: same spectrum (no coupling!)
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QPU Spectrum: Include Dispersion

smooth approximation: constant Dx = 2.96 around the ring
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=⇒ peak at Qx0 comes from dispersion
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Reason for Dispersion Peak

σx (iturn) =
√〈

x2
i

〉
beam−〈

xi
〉2
beam

with xi (iturn) =
√
βx ε

s.p.
x,i cos(2πQx0iturn+Ψ0)+Dx δi

∼=⇒ x2
i = ...cos2(2πQx0iturn+ ...)︸ ︷︷ ︸

...cos(2π2Qx0iturn+...)

+...Dx δi ·cos(2πQx0iturn+ ...)+ ...

due to: 2cos2(α)=cos(2α)+1

i.e. only for Dx 6= 0 =⇒ peak at Qx0
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Reason for Dispersion Peak

σx (iturn) =
√〈

x2
i

〉
beam−〈

xi
〉2
beam

with xi (iturn) =
√
βx ε

s.p.
x,i cos(2πQx0iturn+Ψ0)+Dx δi

∼=⇒ x2
i = ...cos2(2πQx0iturn+ ...)︸ ︷︷ ︸

...cos(2π2Qx0iturn+...)

+...Dx δi ·cos(2πQx0iturn+ ...)+ ...

due to: 2cos2(α)=cos(2α)+1

i.e. only for Dx 6= 0 =⇒ peak at Qx0
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QPU Spectrum: Include Synchrotron Motion

synchrotron motion couples to betatron motion through non-zero
Dx = 29.6m (smooth approximation!)
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=⇒ peak separation at Qx0 from synchrobetatron coupling
Qs = 0.017 at injection for V = 5.75MV
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QPU Spectrum: Slower Synchrotron Motion

synchrotron motion couples to betatron motion through non-zero
Dx = 29.6m (smooth approximation!)
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Qs = 0.007 changing γtr = 17.95 −→ 25 (while γ= 27.7)
=⇒ peak separation shrinks
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Reason for Peak Separation with Qs

x2
i = ...+ ...Dx δi · cos(2πQx0iturn+ ...)+ ...

with δi (iturn) = δ̂i cos(2πQs iturn+ ...)

∼=⇒ x2
i = ...+ ... cos(2πQx0iturn+ ...)cos(2πQs iturn+ ...)︸ ︷︷ ︸

cos(2π(Qx0−Qs )iturn+...)+cos(2π(Qx0+Qs )iturn+...)

+...

due to: 2cos(α)cos(β)=cos(α−β)+cos(α+β)

i.e. for Dx 6= 0 and Qs 6= 0:
one peak at Qx0 =⇒ two peaks located at Qx0 ±Qs
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Reason for Peak Separation with Qs

x2
i = ...+ ...Dx δi · cos(2πQx0iturn+ ...)+ ...

with δi (iturn) = δ̂i cos(2πQs iturn+ ...)

∼=⇒ x2
i = ...+ ... cos(2πQx0iturn+ ...)cos(2πQs iturn+ ...)︸ ︷︷ ︸

cos(2π(Qx0−Qs )iturn+...)+cos(2π(Qx0+Qs )iturn+...)

+...

due to: 2cos(α)cos(β)=cos(α−β)+cos(α+β)

i.e. for Dx 6= 0 and Qs 6= 0:
one peak at Qx0 =⇒ two peaks located at Qx0 ±Qs
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PS: Bunched Beam with SC (Normal VRF = 24kV)

bunched transv. distr. synchrotron motion dispersion chromaticity
yes KV (uniform) yes yes no
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55 of 29 Adrian Oeftiger QPU Studies for SC Measurement



PS: Bunched Beam with SC (Large VRF = 1.5MV)

bunched transv. distr. synchrotron motion dispersion chromaticity
yes KV (uniform) yes yes no
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at usual VRF = 24kV we have
QS ≈ 1/600

at (unrealistic) VRF = 1.5MV
we have QS ≈ 0.0107

=⇒ two peaks are clearly separated
in quadrupolar spectrum
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