

ARIES Workshop, CERN, 15th of May 2018
Peter Forck

Gesellschaft für Schwerionenforschnung GSI

ARIES
This project has received funding from the European Union's Horizon 2020
Research and Innovation programme under Grant Agreement No 730871

Shot Noise for free Charge Carriers (here Electrons)

Emission of electrons in a vacuum tube:

W. Schottky, 'Spontaneous current fluctuations in various electrical conductors', Ann. Phys. 57 (1918) [original German title: 'Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern']

Result: Emission of electrons follows statistical law ⇒ white noise

Physical reason: Charge carrier of final mass and charge

Walter Schottky (1886 – 1976):

- German physicist at Universities Jena, Würzburg & Rostock and at company Siemens
- Investigated electron and ion emission from surfaces
- Design of vacuum tubes
- Super-heterodyne method i.e spectrum analyzer
- Solid state electronics e.g. metal-semiconductor interface called 'Schottky diode'
- No connection to accelerators

Source: Wikipedia

Shot Noise for free Charge Carriers (here Electrons)

Emission of electrons in a vacuum tube:

W. Schottky, 'Spontaneous current fluctuations in various electrical conductors', Ann. Phys. 57 (1918) [original German title: 'Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern']

Result: Emission of electrons follows statistical law ⇒ white noise

Physical reason: Charge carrier of final mass and charge for <u>single</u> pass arrangement **Assuming**: charges of quantity e, N average charges per time interval and τ duration of travel

fluctuations as
$$I_{noise} = \sqrt{\langle I^2 \rangle} = \sqrt{\frac{e^2 \cdot N}{\tau}} \propto \sqrt{N}$$
 $\Leftrightarrow \frac{I_{noise}}{I_{tot}} \propto \sqrt{1/N}$, I_{tot} is total current

This is white noise i.e. flat frequency spectrum It is called **shot noise!**

'Schottky signals' in circular accelerators of multiple passages:

This is **not** shot noise!

But the **fluctuations** caused by randomly distributed particles detected by the correlation of their **repeating** passage at one location!

 \Rightarrow The frequency spectrum has bands i.e. not flat

Schottky signal analysis: Developed at CERN ISR $\approx 1970^{th}$ for operation of stochastic cooling

synchrotron

Schottky pickup

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion

Remark:

Assumption for the considered cases (if not stated otherwise):

- ightharpoonup Equal & constant synchrotron frequency for all particles $\Rightarrow \Delta f_{syn} = 0$
- \triangleright No interaction between particles (e.g. space charge) \Rightarrow no incoherent effect e.g. $\Delta Q_{incoh} = 0$
- ightharpoonup No contributions by wake fields \Rightarrow no coherent effects by impedances e.g. $\Delta Q_{coh} = 0$

Longitudinal Schottky Analysis: 1st Step

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge e rotates with $t_1 = 1/f_0$:

Current at pickup
$$I_1(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_0)$$

$$\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$$

i.e. frequency spectrum comprise of δ -functions at ${m h}{m f_0}$

This can be proven by **Fourier Series** for periodic signals (and display of positive frequencies only)

Schottky pickup U_{left} V_{right} vev. time vev. time

Longitudinal Schottky Analysis: 1st Step

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge e rotates with $t_1 = 1/f_0$:

Current at pickup
$$I_1(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_0)$$

$$\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$$

Particle 2 of charge e rotating with $t_2 = 1/(f_0 + \Delta f)$:

Current at pickup
$$I_2(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_2)$$

$$\Rightarrow I_2(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - h \cdot [f_0 + \Delta f])$$

Important result for 1st step:

- The entire information is available around all harmonics
- \triangleright The distance in frequency domain scales with $h \cdot \Delta f$

Schottky pickup U_{left} U_{sum} Σ $t_{\theta} = 1/f_{\theta}$ Particle 2 Particle 1

Longitudinal Schottky Analysis: 2nd Step

Averaging over many particles for a coasting beam:

Assuming **N** randomly distributed particles characterized by phase θ_1 , θ_2 , θ_3 ... θ_N with same revolution time $t_0 = 1/f_0 \Leftrightarrow$ same revolution frequency f_0

The total beam current is:
$$I(t) = ef_0 \sum_{n=1}^{N} \cos \theta_n + 2ef_0 \sum_{n=1}^{N} \sum_{k=1}^{\infty} \cos(2\pi f_0 kt + k\theta_n)$$

For observations much longer than one turn: average current $\langle I \rangle_h = 0$ for **each** harm. $h \neq 1$ **but** In a band around **each** harmonics h the rms current $I_{rms}(h) = \sqrt{\langle I^2 \rangle_h}$ remains:

$$\left\langle I^{2}\right\rangle_{h} = \left(2ef_{0}\sum_{n=1}^{N}\cos(h\theta_{n})\right)^{2} = \left(2ef_{0}\right)^{2} \cdot \left(\cos h\theta_{1} + \cos h\theta_{2} + ...\cos h\theta_{N}\right)^{2}$$

$$\equiv \left(2ef_{0}\right)^{2} \cdot N\left\langle\cos^{2}h\theta_{i}\right\rangle = \left(2ef_{0}\right)^{2} \cdot N \cdot \frac{1}{2} = 2e^{2}f_{0}^{2} \cdot N \text{ due to the random phases } \theta_{n}$$

The power at each harmonic \boldsymbol{h} is: $P_h = Z_t \langle I^2 \rangle_h = 2 \, Z_t \, e^2 f_0^2 \cdot N$ measured with a pickup of transfer impedance $\boldsymbol{Z_t}$

Important result for 2nd step:

The **integrated** power in each band is constant and $P_h \propto N$ Remark: Random distribution is connected to shot noise & W. Schottky (1918) Regular BPM processing for bunched beams: $P_h^{BPM} \propto N^2$

Longitudinal Schottky Analysis: 3rd Step

Introducing a frequencies distribution for many particles:

The dependence of the distribution per band is: $\frac{dP_h}{df} = Z_t \cdot \frac{d}{df} \langle I^2 \rangle_h = 2Z_t e^2 f_0^2 N \cdot \frac{dN}{df}$

Inserting the acc. quantity $\frac{df}{f_0} = h \, \eta \cdot \frac{dp}{p_0}$ leads to : $\frac{dP_h}{df} = 2Z_t e^2 p_0 N \cdot \frac{f_0}{h} \cdot \frac{1}{n} \cdot \frac{dN}{dp}$

Important results from 1st to 3rd step:

- reflects the particle's momentum distribution: $\frac{dP_h}{df} \propto \frac{dN}{dp} = \frac{10^0}{10^0}$ The maxima of each band scales $\frac{dP_h}{df}\Big|_{max} \propto \frac{1}{h}$ Pasurement: Low f preferred for good signal. ightharpoonup The power spectral density $\frac{dP_h}{df}$ in **each** band
- ightharpoonup The maxima of each band scales $\left. \frac{dP_h}{df} \right|_{max} \propto \frac{1}{h}$

Measurement: Low *f* preferred for good signal-to-noise ratio

Measurement: High f preferred for good frequency resolution

- ightharpoonup The power scales only as $\frac{dP_h}{df} \propto N$ due to random phases of particles i.e. incoherent single particles' contribution
- For ions A^{q+} the power scales $\frac{dP_h}{df} \propto q^2 \Rightarrow$ larger signals for ions

Remark: The 'power spectral density' $\frac{dP_h}{df}$ is called only 'power' P_h below

Pickup for Schottky Signals: Capacitive Pickup

A Schottky pickup can be like a capacitive BPM:

- > Typ. 20...50 cm insertion length
- ➤ High position sensitivity for transverse Schottky
- > Allows for broadband processing
- Linearity for position **not** important

Example: Schottky pickup at GSI synhrotron

horizontal pickup

Example: 50 Ω Schottky for HIT, Heidelberg operated as capacitive (mostly) or strip-line

Typical transfer impedance

Challenge for electronics:

- Low noise amplifier
- Multi stage amplifier: prevent for signal saturation

Transfer impedance:

Coupling to beam $\textit{\textbf{U}}_{\textit{signal}}$ = $\textit{\textbf{Z}}_t \cdot \textit{\textbf{I}}_{\textit{beam}}$ Typically $\textit{\textbf{Z}}_t \approx 1~\Omega$, $\textit{\textbf{R}}$ = 50 Ω , $\textit{\textbf{C}} \approx 100~\text{pF}$

- \Rightarrow f_{cut} = (RC)⁻¹ pprox 30 MHz
- \Rightarrow operation rang $f = 30 \dots 200$ MHzi.e. above f_{cut} & below signal distortion

Momentum spread $\Delta p/p_0$ measurement after multi-turn injection & de-bunching of t < 1ms duration to stay within momentum acceptance during acceleration

Method: Variation of buncher voltage

i.e. rotation in longitudinal phase space

 \rightarrow minimizing of momentum spread $\Delta p/p_0$

LINAC bunches at injection: De-bunching after some ms: long, phase space long. phase space de-bunching $= \Delta p/p$ $\Delta p/p$ **Schottky** П time or phase time or phase $\mathbf{U}_{\mathrm{sum}}$ **Schottky** pickup synchrotror buncher injection extraction

Example: 10^{10} U²⁸⁺ at 11.4 MeV/u injection plateau 150 ms, $\eta = 0.94$ Longitudinal Schottky at harmonics h = 117 Momentum spread variation:

$$\Delta p/p \approx (0.6...\ 2.5) \cdot 10^{-3} \ (1\sigma)$$

Electron Cooling: Monitoring of Cooling Process

Example: Observation of cooling process at GSI storage ring

Ion beam: 108 protons at 400 MeV

Electron beam I_{ele} = 250 mA

Momentum spread (1 σ): $\Delta p/p = 4 \cdot 10^{-4} \rightarrow 3 \cdot 10^{-5}$ within 650 s

J. Roßbach et al., Cool 2015, p. 136 (2015)

Application:

- Alignment of cooler parameter and electron-ion overlap
- ➤ Cooling force & intra-beam scattering measurement

Schottky pickup

Pillbox Cavity for vey low Detection Threshold

Enhancement of signal strength by a cavity

Example: Pillbox cavity at GSI and Lanzhou storage ring for with variable frequency

Outer $\varnothing_{\mathrm{out}}$	600 mm	
Beam pipe \varnothing_{in}	250 mm	
Mode (monopole)	TM ₀₁₀	
Res. freq. f _{res} Variable by plunger	≈ 244 MHz ± 2 MHz	
Quality factor $oldsymbol{Q_0}$	≈ 1100	
Loaded Q _I	≈ 550	
R/Q_0	≈ 30 Ω	
Coupling	Inductive loop	

Advantage:

Sensitive down to single ion observation

Part of cavity in air due to ceramic gap beam

Can be sort-circuited to prevent for wake-field excitation

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC'11, p.107 (2011), F. Suzaki et al., HIAT'15, p.98 (2015) For RHIC design: W. Barry et al., EPAC'98, p. 1514 (1998), K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009)

E_{long} TM₀₁₀ cavity

Pillbox Cavity for single Ion Detection

Observation of *single* ions is possible:

Example: Storage of six 142Pm⁵⁹⁺ at 400 MeV/u during electron cooling

Application:

- Single ion observation for basic accelerator research
- Observation of radio-active nuclei for life time and mass measurements

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC'11, p.107 (2011), F. Suzaki et al., HIAT'15, p.98 (2015)

Outline of the tutorial:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for the following case:
 - Longitudinal for coasting beams
 - > Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion

Transverse Spectrum for a coasting Beam: Single Particle

Observation of the difference signal of two pickup electrodes:

Betatron motion by a single particle 1 at Schottky pickup:

Displacement:
$$x_1(t) = A_1 \cdot \cos(2\pi q f_0 t)$$

A₁: single particle trans. amplitude

 ${\it q}$: non-integer part of tune

Dipole moment: $d_1(t) = x_1(t) \cdot I(t)$

longitudinal part equals 'carrier'

Pickup voltage: $U_1(t) = Z_{\perp} \cdot d_1(t)$

equals 'signal'

Transverse Spectrum for a coasting Beam: Single Particle

Observation of the difference signal of two pickup electrodes:

Betatron motion by a single particle 1 at Schottky pickup:

Displacement:
$$x_1(t) = A_1 \cdot \cos(2\pi q f_0 t)$$

A₁: single particle trans. amplitudeq: non-integer part of tune

Dipole moment:
$$d_1(t) = x_1(t) \cdot I(t)$$

transverse part longitudinal part equals 'signal' equals 'carrier' Inserting longitudinal Fourier series: $d_1(f) =$

$$ef_0 \cdot A_1 + 2ef_0A_1 \cdot \sum_{h=1}^{\infty} \cos(2\pi q f_0 t) \cdot \cos(2\pi h f_0 t)$$

$$= ef_0 \cdot A_1 + ef_0 A_1 \cdot \sum_{h=1}^{\infty} \cos(2\pi [h-q] f_0 t) \cdot \cos(2\pi [h+q] f_0 t)$$

longitudinal Schottky

amplitude modulation; left & right sideband with distance *q* at each harmonics

betatron sidebands h-q h+q h-1 h h+1 frequency f/f₀

Principle of Amplitude Modulation

Composition of two waves:

- Carrier: For synchrotron \rightarrow revolution freq. $f_0 = 1/t_0$ $U_c(t) = \hat{U}_C \cdot \cos(2\pi f_0 t)$
- Signal: For synchrotron \rightarrow betatron frequency $f_{\beta} = \mathbf{q} \cdot f_0$ $\mathbf{q} < 1$ non-integer part of tune $\mathbf{Q} = \mathbf{n} + \mathbf{q}$ $\mathbf{U}_{\beta}(\mathbf{t}) = \widehat{\mathbf{U}}_{\beta} \cdot \cos(2\pi q f_0 t)$

Amplitude multiplication of both signals
$$m_{eta}=rac{\widehat{U}_{eta}}{\widehat{U}_{c}}=1$$

$$\Rightarrow \mathbf{U}_{tot}(t) = \left[\widehat{\mathbf{U}}_{c} + \widehat{\mathbf{U}}_{\beta} \cdot \cos(2\pi q f_{0} t)\right] \cdot \cos(2\pi f_{0} t)$$

$$= \widehat{\mathbf{U}}_{c} \cdot \cos(2\pi f_{0} t)$$

$$+ \frac{1}{2} \widehat{\mathbf{U}}_{\beta} \cdot \left[\cos(2\pi [1 - q] f_{0} t) + \cos(2\pi [1 + q] f_{0} t)\right]$$

Using:
$$\cos(x) \cdot \cos(y) = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

Remark:

Pickup difference signal \Rightarrow central carrier peak vanish if beam well centered in pickup

Transverse Spectrum for a coasting Beam: Many Particles

 $\mathbf{U}_{\mathsf{diff}}$

Observation of the difference signal of two pickup electrodes:

Betatron motion by two particles at pickup:

Displacements:
$$\mathbf{x_1}(t) = A_1 \cdot \cos(2\pi q_1 f_0 t)$$

: $\mathbf{x_2}(t) = A_2 \cdot \cos(2\pi q_2 f_0 t + \varphi_2)$

Example: $q_1 = 0.21 \& : q_2 = 0.26$

Example: $\mathbf{Q} = 4.21$, $\Delta \mathbf{p}/\mathbf{p_0} = 2.10^{-3}$, $\eta = 1$, $\xi = -1$

 $\mathbf{U}_{\text{right}}$

U_{left}

Schottky pickup

Transverse Schottky band for a distribution:

- Amplitude modulation of longitudinal signal (i.e. 'spread of carrier')
- > Two sideband centered at $f_h^{\pm} = (h \pm q) \cdot f_0$ \Rightarrow tune measurement
- ➤ The width is unequal for both sidebands (see below)
- ➤ The integrated power is constant (see below)

Example of a transverse Schottky spectrum:

- Wide scan with lower and upper sideband
- Tune from central position of both sidebands

$$q = h \cdot \frac{f_h^+ - f_h^-}{f_h^+ + f_h^-}$$

- > Sidebands have different shape
- Tune measurement without beam influence
- ⇒ usage during regular operation

Example: Horizontal tune $Q_h = 4.161 \rightarrow 4.305$ within 0.3 s for preparation of slow extraction Beam Kr³³⁺ at 700 MeV/u, $f_0 = 1.136$ MHz $\Leftrightarrow h = 22$

Characteristic movements of sidebands visible

Sideband Width for a coasting Beam

Calculation of the sideband width:

The sidebands at $f_h^{\pm} = (h \pm q) \cdot f_o$ comprises of

Longitudinal spread expressed via momentum P

$$\frac{\Delta f}{f_0} = \boldsymbol{\eta} \cdot \frac{\Delta p}{p_0}$$
 ($\boldsymbol{\eta}$: freq. dispersion)

Transverse tune spread $\Delta Q = \Delta q$ for low current dominated by chromaticity

$$\frac{\Delta q}{Q_0} = \xi \cdot \frac{\Delta p}{p_0} = \frac{\xi}{\eta} \cdot \frac{\Delta f}{f_0}$$

Depictive Example: $\eta = 1$, $\xi = -1$

Reference particle: tune q_0

Particle 1 with
$$p_1 > p_0 \Rightarrow q_1 = q_0$$
 - $|\xi \cdot \Delta p_1/p_0| < q_0$

Particle 2 with
$$p_2 < p_0 \Rightarrow q_2 = q_0 + |\xi \cdot \Delta p_2/p_0| > q_0$$

Sideband Width for a coasting Beam

Calculation of the sideband width:

The sidebands at $f_h^{\pm} = (h \pm q) \cdot f_o$ comprises of

Longitudinal spread expressed via momentum

$$\frac{\Delta f}{f_0} = \boldsymbol{\eta} \cdot \frac{\Delta p}{p_0}$$
 ($\boldsymbol{\eta}$: freq. dispersion)

Transverse tune spread $\Delta Q = \Delta q$ for low current dominated by chromaticity

$$\frac{\Delta q}{Q_0} = \xi \cdot \frac{\Delta p}{p_0} = \frac{\xi}{\eta} \cdot \frac{\Delta f}{f_0}$$

Example: $\mathbf{Q} = 4.21$, $\Delta \mathbf{p}/\mathbf{p_0} = 2.10^{-3}$, $\eta = 1$, $\xi = -1$

Using $f_h^{\pm} = (h \pm q) \cdot f_0$ & product rule for differentiation normalized frequency f / f₀

$$\Rightarrow$$
 lower sideband : $\Delta f_h^- = (h - q) \cdot \Delta f_h - \Delta q \cdot f_0 = \eta \frac{\Delta p}{p_0} \cdot f_0 \left(h - q - \frac{\xi}{\eta} Q_0 \right)$

$$\Rightarrow$$
 upper sideband: $\Delta f_h^+ = (h+q) \cdot \Delta f_h + \Delta q \cdot f_0 = \eta \frac{\Delta p}{p_0} \cdot f_0 \left(h+q+\frac{\xi}{\eta}Q_0\right)$
long. part trans. chromatic coupling

Results:

- > Sidebands have different width in dependence of Q_o , η and ξ i.e. 'longitudinal \pm transverse \pm coupling' \Rightarrow 'chromatic tune'
- \triangleright The width measurement can be used for chromaticity ξ measurements

Power per Band for a coasting Beam & transverse rms Emittance

Dipole moment for a harmonics h for a particle with betatron amplitude A_n :

$$\mathbf{d_n}(\mathbf{hf}) = 2ef_0A_n \cdot \cos(2\pi q f_0 t + \theta_n) \cdot \cos(2\pi h f_0 t + \varphi_n)$$

Averaging over betatron phase θ_n and spatial distribution for the n = 1...N particles:

$$\Rightarrow \langle d^2 \rangle = e^2 f_0^2 \cdot N/2 \cdot \langle A^2 \rangle \cdot N/2$$

with $\langle A^2 \rangle \equiv x_{rms}^2 = \varepsilon_{rms} \beta$ square of average transverse amplitudes

$$\Rightarrow P_h^{\pm} \propto \langle d^2 \rangle = e^2 f_0^2 \cdot \frac{N}{2} \cdot \varepsilon_{rms} \beta$$
 with ε_{rms} transvers emittance and β -function at pickup Results:

\triangleright Power P_h^{\pm} is the same at each harmonics **h**

> Power decreases for lower emittance beams (due to decreasing modulation power)

 \Rightarrow measurement of rms emittance is possible.

Example for sideband behavior:

Emittance shrinkage during stochastic cooling at GSI

- ➤ Width: smaller due to longitudinal cooling
- ➤ Height: ≈ constant due to transverse cooling
- Power P_h^{\pm} decreases \Rightarrow emittance determination, **but** requires normalization by profile monitor

Movable Schottky cavity at RHIC \Rightarrow absolute calibration for ε see K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), W. Barry et al., EPAC'98, p. 1514 (1998)

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for the following case:
 - Longitudinal for coasting beams
 - > Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion

Frequency modulation by composition of two waves:

- Carrier: For synchrotron \rightarrow revolution freq. $f_0 = 1/t_0$ $U_c(t) = \widehat{U}_C \cdot \cos(2\pi f_0 t)$
- Signal: For synchrotron \rightarrow synchrotron freq. $f_s = Q_s \cdot f_0$ $Q_s << 1$ synchrotron tune i.e. long. oscillations per turn $\tau_s(t) = \hat{\tau}_s \cdot \cos(2\pi f_s t)$

Frequency modulation is: $U_{tot}(t) = \widehat{U}_C$.

$$\cos\left(2\pi f_0 t + m_s \cdot \int_0^t \tau_s(t') dt'\right)$$

$$= \widehat{U}_C \cdot \cos\left(2\pi f_0 t + \frac{m_S \widehat{\tau}_S}{2\pi f_S} \cdot \sin(2\pi f_S t)\right)$$

Source: wikipedia

Bunched Beam: Longitudinal Schottky Spectrum for a single Particle

Frequency modulation by composition of two waves:

- **Carrier:** For synchrotron \rightarrow revolution freq. $f_0 = 1/t_0$ $U_c(t) = \widehat{U}_C \cdot \cos(2\pi f_0 t)$
- > Signal: For synchrotron → synchrotron freq. $f_s = Q_s \cdot f_0$ $Q_s < 1$ synchrotron tune i.e. long. oscillations per turn

$$Q_s << 1$$
 synchrotron tune i.e. long. oscillations per turn $\tau_s(t) = \hat{\tau}_s \cdot \cos(2\pi f_s t)$

Modification of coasting beam case by synchrotron oscillation:

 $I_1(t) = ef_0 + 2ef_0 \sum_{h=0}^{\infty} \cos\left\{2\pi h f_0[t+\hat{\tau}_s\cos(2\pi f_s t+\psi)]\right\}_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{$

$$\sum_{p=-\infty}^{\infty} J_{p}(2\pi h f_{0}\hat{\boldsymbol{\tau}}_{s}) \cdot \cos(2\pi h f_{0}t + 2\pi p f_{s}t + p\psi)$$

For **each** revolution harmonics **h** the longitudinal is split

- \triangleright Central peak at hf_0 with height $J_0(2\pi \cdot hf_0 \cdot \hat{\tau}_s)$
- \triangleright Sidebands at $hf_0 \pm pf_s$ with height $J_p(2\pi \cdot hf_0 \cdot \hat{\tau}_s)$

Note:

- The argument of Bessel functions contains amplitude of synchrotron oscillation $\hat{\tau}_s$ & harmonics h
- Distance of sidebands are independent on harmonics h

Bunched Beam: Longitudinal Schottky Spectrum for many Particles

Particles have different amplitudes $\hat{m{ au}}_{\scriptscriptstyle S}$ and initial phases ψ

 \Rightarrow averaging over initial parameters for n = 1...N particles:

Results:

- Central peak p = 0: No initial phase for single particles $U_0(t) \propto J_0(2\pi \cdot h f_0 \cdot \hat{\tau}_s) \cdot \cos(2\pi h f_0 t)$
 - \Rightarrow Total power $P_{tot}(p=0) \propto N^2$
 - i.e. contribution from 1...N particles add up coherently
 - \Rightarrow Width: $\sigma_{p=0} = 0$ (ideally without power supplier ripples etc.)

Remark: This signal part is used in regular BPMs

- ⇒ this is **not** a Schottky line in a **stringent** definition
- > Side bands $p \neq 0$: initial phases ψ appearing $U_p(t) \propto J_p(2\pi \cdot hf_0 \cdot \hat{\tau}_s) \cdot \cos(2\pi hf_0 t + 2\pi pf_s t + p\psi)$
 - \Rightarrow Total power $P_{tot}(p \neq 0) \propto N$
 - i.e. contribution from 1...**N** particles add up **incoherently**
 - \Rightarrow Width: $\sigma_{p\neq 0} \propto p \cdot \Delta f_s$ lines getting wider due to momentum spread $\Delta p / p_0$ & possible spread of synchrotron frequency Δf_s

Example for scaling of power:

If
$$N = 10^{10}$$
 then $P_{tot}(\mathbf{p} = \mathbf{0}) \approx 100 \text{dB} \cdot P_{tot}(\mathbf{p} \neq \mathbf{0})$

Example of longitudinal Schottky Analysis for a bunched Beam

Example: Bunched beam at GSI synchrotron Beam: Injection $E_{kin} = 11.4 \text{ MeV/u harm. } h = 120 \text{ MeV/u harm.}$

Application for 'regular' beams:

- \triangleright Determination of synchrotron frequency f_s
- Determination of momentum spread:
 - envelope does **not** represent directly coasting beam
 - ⇒ **not** directly usable for daily operation
 - but can be extracted with detailed analysis due to the theorem $\sum_{p=-\infty}^{\infty} J_p^2(x) = 1$ for all x $\sum_{p=-\infty}^{\infty} J_p(x) = 1$ and $J_{-p}(x) = (-1)^p J_p(x)$
 - \Rightarrow for each band $h: \int P_{bunch} df = \int P_{coasting} df$

Power spectrum with $P \propto J_p^2$

Application for intense beams:

- The sidebands reflect the distribution $P(f_s)$ of the synchrotron freq. due to their incoherent nature see e.g. E. Shaposhnikova et al., HB'10, p. 363 (2010) & PAC'09, p. 3531 (2009), V. Balbecov et al., EPAC'04, p. 791 (2004)
- However, the spectrum is significantly deformed amplitude $\hat{\tau}_s$ dependent synchrotron freq. f_s ($\hat{\tau}_s$) see e.g. O. Boine-Frankenheim, V. Kornilov., Phys. Rev. AB 12. 114201 (2009)

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for the following case:
 - Longitudinal for coasting beams
 - > Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion

Transverse Schottky Analysis for bunched Beams

Transverse Schottky signals are understood as

- amplitude modulation of the longitudinal signal
- convolution by transverse sideband

Example: GSI $E_{kin} = 11.4$ MeV/u, harmonics h = 119

Schottky pickup Uleft Uright bunch

Structure of spectrum:

- Longitudinal peak with synchrotron SB
 - central peak $P_0 \propto N^2$ called coherent
 - sidebands $P_p \propto N$ called incoherent
- > Transverse peaks comprises of
 - replication of coherent long. structure
 - incoherent base might be visible

Remark: Spectrum can be described by lengthy formula see e.g. S. Chattopadhay, CERN 84-11 (1984)

Remark: Height of long. band depends center of the beam in the pickup

Transverse Schottky Analysis for bunched Beams at LHC

Schottky spectrogram during LHC ramp and collision:

The interesting information is in the <u>in</u>coherent part of the spectrum (i.e. like for coasting beams)

- > Longitudinal part
 - *Width:* → momentum spread
- > Transverse part
 - **Center:** → tune
 - Width: → chromaticity
 difference of lower & upper SB
 - **Integral** : \rightarrow emittance

Example: LHC nominal filling with Pb⁸²⁺ ',harm. $h \approx 4.10^5$ \rightarrow acceleration & collisional optics within ≈ 50 min

CERN: M. Betz et al. IPAC'16, p. 226 (2016), M. Betz et al., NIM A 874, p. 113 (2017)

FNAL realization and measurement:

A. Jansson et al., EPAC'04, p. 2777 (2004) &

R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011)

LHC 4.8 GHz Schottky: Tune and Chromaticity Measurement

Tune from position of sideband:

Permanent monitoring of tune

- Without excitation
- ➤ High accuracy down to 10⁻⁴ possible
- Time resolution here 30 s

Comparison to BBQ system based on:

- > Transverse (gentle) excitation
- Bunch center detection
- Time resolution here 1 s

Chromaticity from width of sidebands of <u>in</u>coherent part:

- Two different offline algorithms
- Satisfactory accuracy
- Time resolution here 30 s
- Performed at MD time, breaks are due to experimental realignments

Comparison to traditional method (red dots):

- \triangleright Change of bunching frequency $\Rightarrow \delta p = p_{actual} p_0$
- \succ Tune measurement and fit $\Delta Q/Q_0 = \xi \cdot \delta p/p_0$

time duration ≈ 3 h

M. Betz et al. IPAC'16, p. 226 (2016), M. Betz et al., NIM A 874, p. 113 (2017)

LHC 4.8 GHz Schottky: Technical Design of slotted Waveguide

wave guide

47 x 22 mm²

beam pipe

60 x 60 mm²

Challenge for bunched beam Schottky:

Suppression of broadband sum signal to prevent for saturation of electronics

top signal out

Design consideration:

Remember scaling: width $\Delta f \propto h$, power $P \propto 1/h$

Low sum signal i.e. outside of bunch spectrum

(LHC: acceleration by $f_{acc} = 25 \text{ MHz}$)

- Avoiding overlapping Schottky bands
- Sufficient bandwidth to allow switching

Technical choice:

- Narrow band pickup by two wave guide for TE₁₀ mode, cut-off at 3.2 GHz
- Coupling slots for beam's TEM mode
- \Rightarrow center f_c =4.8 GHz \Leftrightarrow harm. $h \approx 4.10^5$

& **BW** ≈0.2 GHz

Photo of 1.8 GHz Schottky pickup at FNAL recycler

E-field in wave guide

270 slots of 2 x 20 mm²

CERN: M. Wendt et al. IBIC'16, p. 453 (2016), M. Betz, NIM A 874, p. 113 (2017)

FNAL: R. Pasquinelli et al., PAC'03, p. 3068 (2003) & R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011).

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for the following case:
 - Longitudinal for coasting beams
 - > Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion

Deformed Schottky Spectra for high Intensity coasting Beams

Transverse spectra can be deformed even at 'moderate' intensities for lower energies

Remember: Transverse sidebands were introduced as **coherent** amplitude modulation

Goal: Modeling of a possible deformation leading to correct interpretation of spectra Extracting parameters like tune spread ΔQ_{incoh} by comparison to detailed simulations

Example: Coasting beam GSI synchrotron Ar¹⁸⁺ at 11.4 MeV/u, harm. h = 40, coherent $\Delta Q_{coh} \approx 0$

Method:

- ➤ Calculation of space charge & impedance modification
- Calculation of beam's frequency spectrum
- Comparison to the experimental results
- ⇒ Model delivers reliable beam parameters, spectra can be explained

Schottky diagnostics:

- Spectra do not necessarily represents the distribution, but parameter can be extracted
- O. Boine-Frankenheim et al., Phys. Rev. AB 12, 114201 (2009), S. Paret et al., Phys. Rev. AB 13, 022802 (2010)

Longitudinal Schottky: Modification for very cold Beams

Very high phase space density leads to modification of the longitudinal Schottky spectrum

_{beam} = 330 μA

 $\tilde{\Delta} \boldsymbol{p} / \overline{\boldsymbol{p}_o} \approx 5.1 \tilde{0}^{-5}$

21.7 MeV/u 36Ar18+

₀₈. I_{son}=310 μA

Low energy electron cooler ring:

High long. & trans. phase space density

- ⇒ Strong coupling between the ions
- ⇒ Excitation of co-&counter propagation plasma waves by wake-fields (beam impedance)

This collective density modulation is a coherent effect!

- \Rightarrow Schottky spectrum comprises then **coherent** part with power scaling $P \propto N^2$
 - + the regular **incoherent** part with $P \propto N$
- \Leftrightarrow Schottky **doesn't** represent distribution e.g. $\sigma \neq \Delta p/p_0$ but $\Delta p/p_0$ can be gained from model fit

z(Θ)~ e^{inΘ}

Example: at CSRe cooler ring in Lanzhou, China

Beam: Ar¹⁸⁺ at $\boldsymbol{E_{kin}}$ = 21 MeV/u, harm. $\boldsymbol{h} \approx 100$

21.7MeV/u 36Ar18+

S. Chattopadhay, CERN 84-11 (1984)

L.J. Mao et al. IPAC'10, p. 1946 (2010)

BPMs for coasting Beam by Schottky Analysis \rightarrow Proof of Principle

BPM number 9

cavity off &

debunchin

Bump = + 10 mm

coasting

ADC comb

125MS/s filter

Position measurement with BPMs for a coasting beam

20

15

10

-5

Position y

Beam: $E_{kin} = 800 \text{ MeV/u}$, $f_0 = 0.99 \text{ MHz}$, $f_{rf} = 4.92 \text{ MHz}$, $I_{beam} = 10 \text{ mA}$

bump

Steps of beam manipulation:

- 1. Bunched beam acceleration
- 2. Closed bump in one section
 - \rightarrow regular closed orbit measurement with with 80 μs time steps
- 3. Cavity switch off
 - & frequency detuning
 - → beam de-bunches

BPM data treatment:

- 1. Digital comp filter at Schottky harmonics f(h) for h = 1 ... 8width $\Delta f = 1 \text{ kHz}$
- 2. Time binning average-1.0 with 8 ms steps

 \Rightarrow Position resolution $\Delta x \approx 1$ mm at $\Delta t \approx 10$ ms time steps for coasting beam e.g. useful for slow extraction or cooling observation

Longitudinal Schottky at a LINAC ??? → **Result: Probably not possible**

Is it possible to measure the momentum spread at a single pass accelerator i.e. is there an incoherent contribution to the bunch spectrum?

Experiment at GSI: broadband pickup & oscilloscope (Schottky in synchrotron: Incoherent width $\Delta f_h \propto h$)

Beam: U^{28+} at 11.4 MeV/u, f_{acc} = 36 MHz

Result:

Peak structure does **not** change

for different 'harmonics' **h**:

⇒ no incoherent

Schottky part!

Supported by spectra

recorded with a

cavity @ 1.3 GHz

of high **h** and sensitivity

frequency [MHz]

Interpretation:

Schottky signals require the periodic passage of the **same** particle to ensure the correlation to build up.

P. Kowina et al., HB'12, p. 538 (2012)

Summary

Schottky signals are based on modulations and fluctuations:

Modulation ⇔ **coherent quantities**:

 \blacktriangleright Measurement of f_{o_s} $Q_o \& f_s$ from peak center \rightarrow frequent usage by GSI operators

Fluctuation ⇔ incoherent quantities:

- \triangleright Measurement of $\Delta p/p_0 \& \xi$ from peak width \rightarrow frequent usage for $\Delta p/p_0$ by GSI operators
- \triangleright signature of $\Delta f_s \& \Delta Q$ from peak shape \rightarrow for machine development only at GSI

General scaling: incoherent signal power $P(h) \propto q^2 N / h$ and width $\Delta f(h) \propto h$

q: ion charge state, N: number of ions, h: harmonics

Signal spectrum: Partly complex, but computable for 'regular' cases

High intensity beams: Characteristic modifications, important for model verification

Detection: ➤ Recordable with wide range of pickups, measurement possible in each harmonics

> Electronics for very weak signals must be matched to the application

For valuable discussion I like to thank:

- P. Kowina GSI, R. Singh GSI, M. Wendt CERN for very intense discussion
- M. Betz LBL (formally CERN), O. Boine-Frankenheim GSI, O. Chorniy GSI, P. Hülsmann GSI,
 A. Jansson ESS (formally FNAL), A.S. Müller KIT, M. Steck GSI, J. Steinmann KIT and many others

Thank you for your attention!

Spare slides

Longitudinal Schottky at a LINAC ??? ⇒ No !!!

Beam: U^{28+} at 11.4 MeV/u, $f_{acc} \equiv f_0 = 36$ MHz, $I_{beram} = 0.2$ mA, average of 100 pulse with 0.1 ms duration Final bunching (File 34)

No final bunching (File 32)

0.4 pickup voltage U [02 0.0 20 40 60 80 100 time [ns] -10 -20 magnitude [dB] -30 -40 -50 -60 -70 -80 -6 6 -4 -2 0 2 4 6 frequency difference $\Delta f_h = f - f_h [MHz]$ magnitude ratio $A(\Delta f) / A(hf_0)$ [dB] -10 -30 25 30 15 20 10

harmonic number h

Hadron synchrotron: most beams non-relativistic or γ < 10 (exp. LHC) \Rightarrow **no** synch. light emission \Leftrightarrow stationary particle movement \Rightarrow turn-by-turn correlation

Electron synchrotrons relativistic $\gamma \approx 5000 \implies$ synchrotron light emission

⇔ break-up of turn-by-turn correlation?

Test of longitudinal Schottky at ANKA (Germany): Goal: determination of momentum spread $\Delta p / p_0$ Ring shaped electrode as broadband detector

Results:

- Narrow coherent central peak
- Synchrotron sidebands clearly observed
- Sideband wider as central peak
 - ⇒ incoherent cntribution
- \triangleright Ratio of power $P_{central}/P_{SB}$ as expected
- ⇒ Attempt started, feasibility shown!

Further investigations are ongoing

K.G. Sonnad et al., PAC'09, p. 3880 (2009)

Example: Observation of longitudinal momentum at GSI storage ring

- ➤ Ion beam: U^{92+} at 360 MeV/u applied to electron cooling with $I_{ele} = 250$ mA
- \triangleright Variation of stored ions by lifetime of $\tau \approx 10$ min i.e. total store of several hours
- Longitudinal Schottky spectrum with 30 s integration every 10 min
- \Rightarrow Momentum spread (1 σ): $\Delta p/p = 10^{-4} \rightarrow \text{below } 10^{-6} \text{ when reaching an intensity threshold}$

Interpretation:

- Intra beam scattering as a heating mechanism is suppressed below the threshold
- \triangleright Ions can't overtake each other, but building a 'linear chain' (transverse size σ_x < 30 µm)
- Momentum spread is basically given by stability of power suppliers
- M. Steck et al., Phys. Rev. Lett 77, 3803 (1996), R.W. Hasse, EPAC 00, p. 1241 (2000)

Transverse rms Emittance Determination by Schottky Analysis at RHIC

The integrated power in a sideband delivers the rms emittance $P_h^{\pm} \propto \langle d^2 \rangle \propto \varepsilon_{rms} \cdot \beta$

Example: Schottky cavity operated at dipole mode TM_{120} @ 2.071 GHz & TM_{210} @ 2.067 GHz i.e. a beam with offset excites the mode (like in cavity BPMs)

Peculiarity: The entire cavity is movable \Rightarrow the stored power delivers a calibration P(x)

Result: rms emittances coincide with IPM measurement within the 20 % error bars TABLE II. Results of Schottky emittance scan and comparison to RHIC IPM. Emittance values are normalized.

Ring and plane	Schottky β function (m)	Schottky rms beam size (mm)	Schottky emittance (π μm, 95%)	IPM emittance (π μm, 95%)
Blue horizontal	28 ± 4	1.04 ± 0.1	23 ± 5	24 ± 5
Blue vertical	27 ± 4	0.95 ± 0.1	20 ± 4	23 ± 3
Yellow horizontal	27 ± 4	0.99 ± 0.1	22 ± 4	19 ± 4
Yellow vertical	30 ± 5	1.15 ± 0.1	26 ± 5	28 ± 4

K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), W. Barry et al., EPAC'98, p. 1514 (1998)

Longitudinal Schottky Noise Analysis for acceleration Ramp Operation

500

Example for longitudinal Schottky spectrum to check proper acceleration frequency:

Injection energy given by LINAC settings, here E_{kin} =11.4 MeV/u $\Leftrightarrow \beta$ = 15.5 %, $\Delta p/p \approx 10^{-3}$ (1 σ)

frequency span

250

[kHz]

injection

- multi-turn injection & **de-bunching within** ≈ **ms**
- adiabatic bunch formation & acceleration
- Measurement of revolution frequency f_{rev}
- Alignment of acc. f_{rf} to have $f_{rev} = h \cdot f_{rf}$

Example: Coasting beam at GSI synchrotron at injection

 E_{kin} = 11.4 MeV/u \Leftrightarrow β = 15.5 %, harmonic number h = 119

Application for coasting beam diagnostics:

- ightharpoonup Injection: momentum spread via $\frac{\Delta p}{p_0} = -\frac{1}{\eta} \cdot \frac{\Delta f_h}{h \, f_0}$ as influenced by re-buncher at LINAC
- \triangleright Injection: matching i.e. f_{center} stable at begin of ramp
- Dynamics during beam manipulation e.g. cooling
- Relative current measurement for low current below the dc-transformer threshold of $\approx 1 \mu A$

Permanent chromaticity monitoring at Tevatron:

- > Sidebands around 1.7 GHz i.e. $h \approx 36,000$ with slotted waveguide, see below for CERN type
- Gated, down-mixing & filtered by analog electronics
- Gaussian fit of sidebands
 - Center \rightarrow tune **q**
 - Width \rightarrow chromaticity ξ via $\Delta f^+ \Delta f^-$
 - \rightarrow momentum spread $\Delta p/p$ via $\Delta f^+ + \Delta f^-$

Remark: Spectrum measured with bunched beam and gated signal path, see below A. Jansson et al., EPAC'04, p. 2777 (2004) & R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011)