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Shot Noise for free Charge Carriers (here Electrons)

Emission of electrons in a vacuum tube: 
W. Schottky, ‘Spontaneous current fluctuations in various electrical conductors’, Ann. Phys. 57 (1918)
[original German title:‘Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern’] 

Result: Emission of  electrons follows statistical law  white noise

Physical reason: Charge carrier of final mass and charge 

Walter Schottky (1886 – 1976):
 German physicist at Universities Jena, 

Würzburg & Rostock and at company Siemens 
 Investigated electron and ion emission from surfaces
 Design of vacuum tubes 
 Super-heterodyne method i.e spectrum analyzer 
 Solid state electronics  e.g. metal-semiconductor interface

called ‘Schottky diode’ 
 No connection to accelerators

Source: Wikipedia   
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Assuming: charges of quantity e, N average charges per time interval and  duration of travel 

fluctuations as 𝑰𝒏𝒐𝒊𝒔𝒆 = < 𝑰𝟐 >=
𝒆𝟐∙𝑵

𝝉
∝ 𝑵


𝑰𝒏𝒐𝒊𝒔𝒆

𝑰𝒕𝒐𝒕
∝ Τ𝟏 𝑵 , Itot is total current

This is white noise i.e. flat frequency spectrum

It is called shot noise !

Shot Noise for free Charge Carriers (here Electrons)

Emission of electrons in a vacuum tube: 
W. Schottky, ‘Spontaneous current fluctuations in various electrical conductors’, Ann. Phys. 57 (1918)
[original German title:‘Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern’] 

Result: Emission of  electrons follows statistical law  white noise

Physical reason: Charge carrier of final mass and charge for single pass arrangement

Inoise

U
- +

d,
vacuum

tube

=LINAC
e-

current Inoise(t)

‘Schottky signals’ in circular accelerators of multiple passages: 
This is not shot noise! 
But the fluctuations caused by randomly distributed particles detected 
by the correlation of their repeating passage at one location!
 The frequency spectrum has bands i.e. not flat
Schottky signal analysis: Developed at CERN ISR  1970th

for operation of stochastic cooling 

rev. time

t0 = 1/f0

injection extraction

Schottky pickup

synchrotron
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Outline:

 Introduction to noise and fluctuations relevant for Schottky analysis

 Main part: Schottky signal generation and examples for:

 Longitudinal for coasting beams 

 Transverse for coasting beams

 Longitudinal for bunched beams

 Transverse for bunched beams

 Some further examples for exotic beam parameters 

 Conclusion 

Remark: 

Assumption for the considered cases (if not stated otherwise):

 Equal & constant synchrotron frequency for all particles fsyn = 0 

 No interaction between particles (e.g. space charge)  no incoherent effect e.g. Qincoh = 0  

 No contributions by wake fields  no coherent effects by impedances e.g. Qcoh = 0 
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Schottky noise analysis is based on the power spectrum 

for consecutive passage of the same finite number of particles 

time t / t 0

I(t)

Particle 1 rotates with t0 =1/f0

1 2 3 40

Fourier trans. or 
spectrum analyzer

I(f)

harmonic number h = f / f 0

Particle 1: lines at  f1 = hf0

0 1 2 3 4

Longitudinal Schottky Analysis: 1st Step

Particle 1 of charge e rotates with t1 = 1/f0 : 

Current at pickup  𝐼𝟏 𝑡 = 𝑒𝑓0 ∙ σ𝒉=−∞
∞ 𝛿 𝑡 − 𝒉𝑡0

 𝐼1 𝑓 = 𝑒𝑓0 + 2𝑒𝑓0 ∙ σ𝒉=1
∞ 𝛿(𝑓 − 𝒉𝑓0)

i.e. frequency spectrum comprise of -functions at hf0

This can be proven by Fourier Series for periodic signals
(and display of positive frequencies only)

rev. time

t0 = 1/f0

injection extraction

Schottky pickup



Usum
Uleft

Uright
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time t / t 0

I(t)

Particle 1 rotates with t0 =1/f0
Particle 2 rotates t2 =1/(f0 + f)

1 2 3 40

Fourier trans. or 
spectrum analyzer

I(f)

harmonic number h = f / f 0

Particle 2: lines at f2 = h ( f0 + f )

Particle 1: lines at f1 = hf0

0 1 2 3 4

fh 

Particle 2 of charge e rotating with t2 = 1/( f0 + f) : 

Current at pickup  𝐼𝟐 𝑡 = 𝑒𝑓0 ∙ σ𝒉=−∞
∞ 𝛿 𝑡 − 𝒉𝒕𝟐

 𝐼𝟐 𝑓 = 𝑒𝑓0 + 2𝑒𝑓0 ∙ σ𝒉=1
∞ 𝛿(𝑓 − 𝒉 ∙ [ 𝑓0 +∆𝒇 ])

Important result for 1st step: 
 The entire information is available around all harmonics
 The distance in frequency domain scales with hf

Particle 1 of charge e rotates with t1 = 1/f0 : 

Current at pickup  𝐼𝟏 𝑡 = 𝑒𝑓0 ∙ σ𝒉=−∞
∞ 𝛿 𝑡 − 𝒉𝑡0

 𝐼1 𝑓 = 𝑒𝑓0 + 2𝑒𝑓0 ∙ σ𝒉=1
∞ 𝛿(𝑓 − 𝒉𝑓0)

Schottky noise analysis is based on the power spectrum 

for consecutive passage of the same finite number of particles 

Longitudinal Schottky Analysis: 1st Step  

rev. time

t0 = 1/f0

Schottky pickup



Usum
Uleft

Uright

Particle 2 Particle 1
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Longitudinal Schottky Analysis: 2nd Step 

Averaging over many particles for a coasting beam:
Assuming N randomly distributed particles characterized by phase 1, 2 , 3 ...N

with same revolution time t0 = 1/ f0  same revolution frequency f0

     
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The power at each harmonic h is:

measured with a pickup of transfer impedance Zt

   2 2

0

22 NfeZIZP t
h

th 

Important result for 2nd step: 
 The integrated power in each band is constant and Ph  N
Remark: Random distribution is connected to shot noise & W. Schottky (1918)

Regular BPM processing for bunched beams: Ph
BPM  N2

For observations much longer than one turn: average current 𝐼 ℎ = 0 for each harm. h  1

but In a band around each harmonics h the rms current 𝐼𝑟𝑚𝑠 ℎ = 𝐼2 ℎ remains:

The total beam current is:                                                                                                

t0 = 1/f0

1


Usum
Uleft

Uright
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Longitudinal Schottky Analysis: 3rd Step 

Introducing a frequencies distribution for many particles:

The dependence of the distribution per band is: 𝑑𝑃ℎ
𝑑𝑓

= 𝑍𝑡∙
𝑑

𝑑𝑓
𝐼2

ℎ
=2𝑍𝑡𝑒

2 𝑓0
2𝑁 ∙

𝑑𝑁

𝑑𝑓

Inserting the acc. quantity  
𝑑𝑓

𝑓0
= ℎ 𝜂 ∙

𝑑𝑝

𝑝0
leads to : 𝑑𝑃ℎ

𝑑𝑓
=2𝑍𝑡𝑒

2𝑝0𝑁 ∙
𝑓0
ℎ

∙
1

𝜂
∙
𝑑𝑁

𝑑𝑝

Important results from 1st to 3rd step: 

 The power spectral density 
𝑑𝑃ℎ

𝑑𝑓
in each band 

reflects the particle’s momentum distribution:   
𝒅𝑷𝒉

𝒅𝒇
∝

𝒅𝑵

𝒅𝒑

 The maxima of each band scales   ቃ
𝑑𝑃ℎ

𝑑𝑓 𝑚𝑎𝑥
∝

1

ℎ

Measurement: Low f preferred for good signal-to-noise ratio 

 The width increase for each band:   
𝑑𝑃ℎ

𝑑𝑓
∝ ℎ

Measurement:  High f preferred for good frequency resolution 

 The power scales only as  
𝑑𝑃ℎ

𝑑𝑓
∝ 𝑁 due  to random phases of particles

i.e.  incoherent single particles’ contribution

 For ions Aq+ the power scales  
𝑑𝑃ℎ

𝑑𝑓
∝ 𝑞2  larger signals for ions

Remark: The ‘power spectral density’  
𝑑𝑃ℎ

𝑑𝑓
is called only ‘power’ 𝑃ℎbelow

Example: 
Gaussian 
p/p = 2% 
 = 1

overlap

t0 = 1/f0

1


Usum
Uleft

Uright
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Pickup for Schottky Signals: Capacitive Pickup

A Schottky pickup can be like a capacitive BPM: 
 Typ. 20...50 cm insertion length
 High position sensitivity for transverse Schottky
 Allows for broadband processing
 Linearity for position not important

Example: Schottky pickup at GSI synhrotron

Transfer impedance: 
Coupling to beam Usignal = Zt  Ibeam

Typically Zt  1 , R= 50 , C  100 pF 
 fcut = (RC)-1  30 MHz  
 operation rang  f = 30 ... 200 MHzi.e. above fcut & below signal distortion

Example: 50  Schottky for HIT, Heidelberg
operated as capacitive (mostly)  or strip-line

CF 250mm

horizontal
pickup

250mm

70mm

Challenge for electronics:

 Low noise amplifier

 Multi stage amplifier: 

prevent for signal saturation

vertical pickup

horizontal  pickup

80 mm beam

ele. feedthru
N-type

CF200

Typical transfer impedance

fcut  30 MHz

pickup in 

50  geometry 



P. Forck, GSI: Introduction to  Schottky Measurements ARIES Workshop CERN, 15th of May 201810

Example: 1010  U28+ at 11.4 MeV/u

injection plateau 150 ms, η = 0.94

Longitudinal Schottky at harmonics h = 117 

Momentum spread variation: 

p/p  (0.6... 2.5) 10-3 (1)

Momentum spread  p/p0 measurement after 

multi-turn injection & de-bunching of  t < 1ms duration

to stay within momentum acceptance during acceleration

Method: Variation of buncher voltage 

i.e. rotation in longitudinal phase space

 minimizing of momentum spread  p/p0

Longitudinal Schottky for Momentum Spread p/p0 Analysis

time or phase


= 


p
/ 

p

long. phase space
LINAC bunches at injection:

from LINAC

35 kHz8 dB

p/p  2.5 10-3

p/p  1.3 10-3

p/p  0.6 10-3

bunched

only drift

de-bunched

6 dB

6 dB

fcenter = 24.9 MHz 

fh  hp

synchrotron

LINAC buncher

time or phase


= 


p
/ 

p

long. phase space
de-bunching

De-bunching after some ms:

Schottky

injection extraction

Schottky

pickup



Usum
Uleft

Uright
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Electron Cooling: Monitoring of Cooling Process

Example:  Observation of cooling process  at GSI storage ring 
Ion beam: 108 protons at 400 MeV
Electron beam Iele = 250 mA
Momentum spread (1): p/p = 4 10-4  3 10-5 within 650 s

Application: 
 Alignment of cooler parameter and electron-ion overlap
 Cooling force & intra-beam scattering measurement 

t = 650 s

fcenter = 245 MHz

 h = 124

fspan = 200 kHz

p/p0 = 310 -5

p/p0 = 410 -4

J. Roßbach et al., Cool 2015, p. 136 (2015)

Schottky pickup



Usum
Uleft

Uright

electron cooler 
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Pillbox Cavity for vey low Detection Threshold  

Enhancement of signal strength by a cavity
Example: Pillbox cavity at GSI and Lanzhou storage ring for with variable frequency  

Advantage: 
 Sensitive down to single ion observation 
 Part of cavity in air due to ceramic gap 
 Can be sort-circuited to prevent for 

wake-field excitation 

beam

100mm

CF250

600

ceramic 
gap

beam
600mm

Outer out 600 mm

Beam pipe in 250 mm

Mode (monopole) TM010

Res. freq. fres

Variable by plunger
 244 MHz
 2 MHz

Quality factor Q0  1100

Loaded Ql  550

R/Q0  30 

Coupling Inductive
loop

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC’11, p.107 (2011), F. Suzaki et al., HIAT’15, p.98 (2015)

For RHIC design: W. Barry et al., EPAC’98, p. 1514 (1998), K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009) 

Elong

beam

TM010 cavity 
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Observation of single ions is possible:
Example: Storage of six 142Pm59+ at 400 MeV/u  during electron cooling 

Application: 
 Single ion observation for basic accelerator research
 Observation of radio-active nuclei for life time and mass measurements

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC’11, p.107 (2011), F. Suzaki et al., HIAT’15, p.98 (2015)

fres =  244.965 MHz frequency  f – fres [kHz]
0 5

mom. spread: p/p = 6.6  10-6time

each trace meas. for 32 ms

beam

100mm

CF250

600

ceramic 
gap

Pillbox Cavity for single Ion Detection



P. Forck, GSI: Introduction to  Schottky Measurements ARIES Workshop CERN, 15th of May 201814

Outline of the tutorial:

 Introduction to noise and fluctuations relevant for Schottky analysis

 Main part: Schottky signal generation and examples for the following case:

 Longitudinal for coasting beams 

 Transverse for coasting beams

 Longitudinal for bunched beams

 Transverse for bunched beams

 Some further examples for exotic beam parameters 

 Conclusion 
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Transverse Spectrum for a coasting Beam: Single Particle

Observation of the difference signal of two pickup electrodes:

Betatron motion by a single particle 1 at Schottky pickup:

Displacement: 𝒙𝟏 𝒕 = 𝐴1 ∙ cos 2𝜋𝑞𝑓0𝑡

A1: single particle  
trans. amplitude

q: non-integer part of tune 

Dipole moment: 𝒅𝟏 𝒕 = 𝑥1 𝑡 ∙ 𝐼(𝑡)

Pickup voltage: 𝑼𝟏 𝒕 = 𝑍⊥ ∙ 𝑑1 𝑡

transverse part
equals ‘signal’

longitudinal part
equals ‘carrier’

Example: q = 0.21

Schottky pickup


UdiffUleft

Uright
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Transverse Spectrum for a coasting Beam: Single Particle

Observation of the difference signal of two pickup electrodes:

Inserting longitudinal Fourier series: 𝒅𝟏 𝒇 =
𝑒𝑓0 ∙ 𝐴1 + 2𝑒𝑓0𝐴1 ∙ σℎ=1

∞ cos(2𝜋𝑞𝑓0𝑡) ∙ cos(2𝜋ℎ𝑓0𝑡)

= 𝑒𝑓0 ∙ 𝐴1 + 𝑒𝑓0𝐴1 ∙ σℎ=1
∞ cos(2𝜋[ℎ − 𝑞]𝑓0𝑡) ∙ cos(2𝜋[ℎ + 𝑞]𝑓0𝑡)

amplitude modulation:
left & right sideband
with distance q
at each harmonics

Schottky pickup


UdiffUleft

Uright

Betatron motion by a single particle 1 at Schottky pickup:

Displacement: 𝒙𝟏 𝒕 = 𝐴1 ∙ cos 2𝜋𝑞𝑓0𝑡

A1: single particle  
trans. amplitude

q: non-integer part of tune 

transverse part
equals ‘signal’

longitudinal part
equals ‘carrier’

Dipole moment: 𝒅𝟏 𝒕 = 𝑥1 𝑡 ∙ 𝐼(𝑡)
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Principle of Amplitude Modulation

Composition of two waves:
 Carrier: For synchrotron revolution freq.  f0 = 1/t0

𝑼𝒄 𝒕 = ෡𝑼𝑪 ∙ cos(2𝜋𝑓0𝑡)
 Signal: For synchrotron betatron frequency f = q  f0

q < 1 non-integer part of tune Q = n + q  

𝑼𝜷 𝒕 = ෡𝑼𝜷 ∙ cos(2𝜋𝑞𝑓0𝑡)

Amplitude multiplication of both  signals   𝑚𝛽 =
෡𝑈𝛽
෡𝑈𝑐
= 1

 𝑼𝒕𝒐𝒕 𝒕 = ෡𝑼𝑪 + ෡𝑼𝛽 ∙ cos 2𝜋𝑞𝑓0𝑡 ∙ cos 2𝜋𝑓0𝑡

= ෡𝑼𝑪 ∙ cos 2𝜋𝑓0𝑡

+ Τ1 2
෡𝑼𝛽 ∙ [ cos 2𝜋 1 − 𝑞 𝑓0𝑡 + cos 2𝜋 1 + 𝑞 𝑓0𝑡 ]

Using: cos 𝑥 ∙ cos 𝑦 = Τ1 2 cos 𝑥 − 𝑦 + cos(𝑥 + 𝑦)

Remark: 

Pickup difference signal   central carrier peak vanish

if beam well centered in pickup

lower

sideband 

upper

sideband 

carrier

q

Example: q = 0.1, ෡𝑼𝛽= ෡𝑼𝑪

Source: wikipedia

signal

carrier

AM
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Transverse Spectrum for a coasting Beam: Many Particles 

Observation of the difference signal of two pickup electrodes:

Betatron motion by two particles  at pickup:

Displacements: 𝒙𝟏 𝒕 = 𝐴1 ∙ cos 2𝜋𝑞1𝑓0𝑡
: 𝒙𝟐 𝒕 = 𝐴2 ∙ cos 2𝜋𝑞2𝑓0𝑡 + 𝜑2

Example: q1 = 0.21 & : q2 = 0.26 

Example: Q = 4.21, p/p0 = 210-3 ,  = 1,  = -1

Schottky pickup


UdiffUleft

Uright

Transverse Schottky band for a distribution:
 Amplitude modulation of 

longitudinal signal (i.e. ‘spread of carrier’)
 Two sideband centered at  fh

 = (h  q) f0

 tune measurement
 The width is unequal for both sidebands

(see below)
 The integrated power is constant (see below)

9.5 10.0 10.5 11.0 11.5

normalized frequency  f / f
0

p
o

w
e

r

long. h=10
lower SB

f10
-

upper SB
f10

+

lower SB
f11

-

upper SB
f11

+

long. h=11

q q
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Example for Tune Measurement using transverse Schottky

Example of  a transverse Schottky spectrum:

 Wide scan with lower and upper sideband

 Tune from central position of both sidebands

𝑞 = ℎ ∙
𝑓ℎ
+ −𝑓ℎ

−

𝑓ℎ
+

+𝑓ℎ
−

 Sidebands have different shape

 Tune measurement without beam influence

 usage during regular operation  

f =1MHz

t =0.2s 

spectrogram 

fast span: 1 MHz

high resolution: 1 MHz span, 0.1 s

5 dB 100 kHz

100 kHz

5 dB

longitudinallower SB 𝒇𝒉
−

upper SB 𝒇𝒉
+

q

Example: Horizontal tune Qh = 4.161  4.305
within 0.3 s for preparation of slow extraction 
Beam Kr33+ at 700 MeV/u,  
f0 = 1.136 MHz  h = 22
Characteristic movements of sidebands visible 

fcenter = 25.7 MHz 

fast span: 1 MHz

100 kHz5 dB

spectrogram 

f =1MHz
t =0.5s 

100 kHz5 dB

longitudinal
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Sideband Width for a coasting Beam

Depictive Example:  = 1,  = -1

P

q0 q0
f/f0

q1 < q0q1 < q0

Particle 1 with p1 > p0  q1 = q0 - |  p1 /p0 | < q0

q2 > q0q2 > q0

Particle 2 with p2 < p0  q2 = q0 + |  p2 /p0 | > q0

Reference particle: tune q0

h h+q0h-q0

Calculation of the sideband width:
The sidebands at  fh

 = (h  q) f0  comprises of
 Longitudinal spread expressed via momentum

∆𝒇

𝒇𝟎
= 𝜼 ∙

∆𝒑

𝒑𝟎
(: freq. dispersion) 

 Transverse tune spread Q = q
for low current dominated by chromaticity
∆𝒒

𝑸𝟎
= 𝝃 ∙

∆𝒑

𝒑𝟎
=

𝝃

𝜼
∙
∆𝒇

𝒇𝟎
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Sideband Width for a coasting Beam

Calculation of the sideband width:
The sidebands at  fh

 = (h  q) f0  comprises of
 Longitudinal spread expressed via momentum

∆𝒇

𝒇𝟎
= 𝜼 ∙

∆𝒑

𝒑𝟎
(: freq. dispersion) 

 Transverse tune spread Q = q
for low current dominated by chromaticity
∆𝒒

𝑸𝟎
= 𝝃 ∙

∆𝒑

𝒑𝟎
=

𝝃

𝜼
∙
∆𝒇

𝒇𝟎

Using  fh
 = (h  q) f0 & product rule for differentiation

 lower sideband : 𝚫𝒇𝒉
−

= 𝒉 − 𝒒 ∙ ∆𝒇𝒉 − ∆𝒒 ∙ 𝒇𝟎 = 𝜼
∆𝒑

𝒑𝟎
∙ 𝒇𝟎 𝒉 − 𝒒 −

𝝃

𝜼
𝑸𝟎

 upper sideband: 𝚫𝒇𝒉
+

= 𝒉 + 𝒒 ∙ ∆𝒇𝒉 + ∆𝒒 ∙ 𝒇𝟎 = 𝜼
∆𝒑

𝒑𝟎
∙ 𝒇𝟎 𝒉 + 𝒒 +

𝝃

𝜼
𝑸𝟎

Example: Q = 4.21, p/p0 = 210-3 ,  = 1,  = -1

Results:
 Sidebands have different width in dependence of Q0,  and 

i.e. ‘longitudinal  transverse  coupling’   ‘chromatic tune’
 The width measurement can be used for chromaticity  measurements

9.5 10.0 10.5 11.0 11.5

normalized frequency  f / f
0

p
o

w
e

r

long. h=10
lower SB

f10
-

upper SB
f10

+

lower SB
f11

-

upper SB
f11

+

long. h=11

q
𝚫𝒇𝟏𝟎

+

𝚫𝒇𝟏𝟎
−

long. part trans. chromatic coupling
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Power per Band for a coasting Beam & transverse rms Emittance

Dipole moment for a harmonics h for a particle with betatron amplitude An: 
𝒅𝒏 𝒉𝒇 = 2𝑒𝑓0𝐴𝑛 ∙ cos(2𝜋𝑞𝑓0𝑡 + 𝜃𝑛) ∙ cos(2𝜋ℎ𝑓0𝑡 + 𝜑𝑛)
Averaging over betatron phase n and spatial distribution for the n = 1...N particles: 

 𝑑2 = 𝑒2𝑓0
2 ∙ 𝑁/2 ∙ 𝐴2 ∙ 𝑁/2

with  𝐴2 ≡ 𝑥𝑟𝑚𝑠
2 = 𝜀𝑟𝑚𝑠𝛽 square of average transverse amplitudes 

 𝑃ℎ
± ∝ 𝑑2 = 𝑒2𝑓0

2 ∙
𝑁

2
∙ 𝜀𝑟𝑚𝑠𝛽 with rms transvers emittance and -function at pickup

Results:

 Power 𝑃ℎ
± is the same at each harmonics h

 Power decreases for lower emittance beams (due to decreasing modulation power)
 measurement of rms emittance  is possible.

t=1.2s

longitudinal

lower SB upper SB

frequency [GHz]
1.2997 1.30071.2987

Example for sideband behavior: 
Emittance shrinkage during stochastic cooling at GSI
 Width: smaller due to longitudinal cooling 
 Height:  constant due to transverse cooling

 Power 𝑃ℎ
± decreases  emittance determination, 

but requires normalization by profile monitor

F. Nolden , DIPAC’01, p.  6 (2001)

Movable Schottky cavity at RHIC  absolute calibration for 
see K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), 
W. Barry et al., EPAC’98, p. 1514 (1998)
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Outline:

 Introduction to noise and fluctuations relevant for Schottky analysis

 Main part: Schottky signal generation and examples for the following case:

 Longitudinal for coasting beams 

 Transverse for coasting beams

 Longitudinal for bunched beams

 Transverse for bunched beams

 Some further examples for exotic beam parameters 

 Conclusion 
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Principle of Frequency Modulation & bunched Beam Schottky

Frequency modulation by composition of two waves:
 Carrier: For synchrotron  revolution freq. f0 = 1/t0

𝑈𝑐 𝑡 = ෡𝑈𝐶 ∙ cos(2𝜋𝑓0𝑡)
 Signal: For synchrotron  synchrotron freq. fs = Qs  f0

Qs < < 1 synchrotron tune i.e. long. oscillations per turn
𝝉𝒔 𝒕 = ො𝝉𝑠 ∙ cos(2𝜋𝑓𝑠𝑡)

Frequency modulation is: 𝑼𝒕𝒐𝒕 𝒕 = ෡𝑈𝐶 ∙

cos 2𝜋𝑓0𝑡 + 𝑚𝑠 ∙ 0׬
𝑡
𝜏𝑠 𝑡

′ 𝑑𝑡′

= ෡𝑈𝐶 ∙ cos 2𝜋𝑓0𝑡 +
𝑚𝑠ො𝜏𝑠
2𝜋𝑓𝑠

∙ sin(2𝜋 𝑓𝑠𝑡)

Source: wikipedia

modulated
revolution 

rf cavity

s(t) 


Usum
Uleft

Uright
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Bunched Beam: Longitudinal Schottky Spectrum for a single Particle

Frequency modulation by composition of two waves:
 Carrier: For synchrotron  revolution freq. f0 = 1/t0

𝑈𝑐 𝑡 = ෡𝑈𝐶 ∙ cos(2𝜋𝑓0𝑡)
 Signal: For synchrotron  synchrotron freq. fs = Qs  f0

Qs < < 1 synchrotron tune i.e. long. oscillations per turn
𝝉𝒔 𝒕 = ො𝝉𝑠 ∙ cos(2𝜋𝑓𝑠𝑡)

0 2 4 6 8 10
x

-0.5

0.0

0.5

1.0

Be
ss

el
 fu

nc
tio

n 
J

n (x
)

J0

J1 J2 J3 J4

x = 1
lower SBs upper SBs

x = 0.1
upper SBslower SBs

J2
2(x=0.1)

J1 
2(x=0.1)J-1

2(x=0.1)

J0
2(x=0.1)

J-2
2(x=0.1)

Modification of coasting beam case by synchrotron oscillation:

𝐼1 𝑡 = 𝑒𝑓0 + 2𝑒𝑓0෍
𝒉=0

∞

cos 2𝜋𝒉𝑓0 𝑡 + ො𝝉𝑠cos(2𝜋𝑓𝑠𝑡 + 𝜓)

Each harmonics h comprises of  lower and upper sidebands:

෍
𝒑=−∞

∞

𝐽𝒑 2𝜋𝒉𝑓0ො𝝉𝑠 ∙ cos 2𝜋𝒉𝑓0𝑡 + 2𝜋𝒑𝑓𝑠𝑡 + 𝒑𝜓

For each revolution harmonics  h the  longitudinal is split 

 Central peak  at hf0 with height 𝐽𝟎 (2𝜋 ∙ 𝒉𝑓0 ∙ ො𝝉𝑠)

 Sidebands at hf0  pfs with height 𝐽𝒑 (2𝜋 ∙ 𝒉𝑓0 ∙ ො𝝉𝑠)

Note: 
 The argument of Bessel functions contains

amplitude of synchrotron oscillation ො𝝉𝑠 & harmonics h
 Distance of sidebands are independent on harmonics h

Bessel function Jp
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x = 0.1
upper SBslower SBs

J2
2(x=0.1)

J1 
2(x=0.1)J-1

2(x=0.1)

J0
2(x=0.1)

J-2
2(x=0.1)

Bunched Beam: Longitudinal Schottky Spectrum for many Particles

Particles have different amplitudes  ො𝝉𝑠 and initial phases 
 averaging over initial parameters for n = 1...N particles:

Results:
 Central peak p = 0:  No initial phase for single particles 

𝑈𝟎 𝑡 ∝ 𝐽𝟎 2𝜋 ∙ 𝒉𝑓0 ∙ Ƹ𝜏𝑠 ∙ cos(2𝜋𝒉𝑓0𝑡)
 Total power 𝑷𝒕𝒐𝒕 𝒑 = 𝟎 ∝ 𝑵𝟐

i.e. contribution from 1...N particles add up coherently
 Width:  p = 0 = 0 (ideally without power supplier ripples etc.) 

Remark: This signal part is used in regular BPMs  
 this is not a Schottky line in a stringent definition 

 Side bands p  0: initial phases  appearing
𝑈𝒑 𝑡 ∝ 𝐽𝒑 2𝜋 ∙ 𝒉𝑓0 ∙ Ƹ𝜏𝑠 ∙ cos(2𝜋𝒉𝑓0𝑡 + 2𝜋𝒑𝑓𝑠𝑡 + 𝒑𝜓)

 Total power 𝑷𝒕𝒐𝒕 𝒑 ≠ 𝟎 ∝ 𝑵
i.e. contribution from 1...N particles add up incoherently
 Width:  p 0  p  fs lines getting wider
due to momentum spread p / p0 & 
possible spread of synchrotron frequency fs 

Example for scaling of power: 
If N = 1010 then 𝑃𝑡𝑜𝑡 𝒑 = 𝟎  100dB  𝑃𝑡𝑜𝑡 𝒑 ≠ 𝟎



Usum
Uleft

Uright

rf cavity

bunch
initial

phase 

s(t) 
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Application for ‘regular’ beams: 

 Determination of synchrotron frequency fs

 Determination of momentum spread: 

- envelope does not represent directly

coasting beam 

 not directly usable for daily operation   

- but can be extracted with detailed analysis

due to the theorem σ𝑝=−∞
∞ 𝐽𝑝

2(𝑥) = 1 for all 𝑥

σ𝑝=−∞
∞ 𝐽 𝑝(𝑥) = 1 and 𝐽−𝑝 𝑥 = −1 𝑝 𝐽𝑝(𝑥)

 for each band h: 𝑃𝑏𝑢𝑛𝑐ℎ𝑑𝑓׬ = 𝑃𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔𝑑𝑓׬

Example: Bunched beam at GSI synchrotron
Beam: Injection Ekin = 11. 4 MeV/u  harm. h = 120 

Example of longitudinal Schottky Analysis for a bunched Beam

Application for intense beams:

 The sidebands reflect the distribution P( fs ) of the synchrotron freq. due to their incoherent nature

see e.g. E. Shaposhnikova et al., HB’10, p. 363 (2010) & PAC’09, p. 3531 (2009), V. Balbecov et al., EPAC’04, p. 791 (2004)

 However, the spectrum is significantly deformed amplitude Ƹ𝜏𝑠dependent synchrotron freq. 𝑓𝑠 Ƹ𝜏𝑠
see e.g.  O. Boine-Frankenheim, V. Kornilov., Phys. Rev. AB 12. 114201 (2009) 

spectrogram fast span: 0.1 MHz

high resolution: 0.1 MHz span, 0.15 s

10 dB

10 dB

10 kHz

10 kHz

synchr. fs  1 kHz

f = 0.1MHz
t =0.3s 

fcenter = 24.8 MHz 

Power spectrum with 𝑃 ∝ 𝐽𝑝
2
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Outline:

 Introduction to noise and fluctuations relevant for Schottky analysis

 Main part: Schottky signal generation and examples for the following case:

 Longitudinal for coasting beams 

 Transverse for coasting beams

 Longitudinal for bunched beams

 Transverse for bunched beams

 Some further examples for exotic beam parameters 

 Conclusion 
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Transverse Schottky Analysis for bunched Beams

Transverse Schottky signals are understood as 
 amplitude modulation of the longitudinal signal
 convolution by transverse sideband

frequency 
hf0 (h+q)f0

(h-q)f0

p
o
w

e
r 

P
d
if
f

fs
q q

Schottky pickup


UdiffUleft

Uright

bunch

Structure of spectrum:
 Longitudinal peak with synchrotron SB

- central peak 𝑃0 ∝ 𝑁2 called coherent 
- sidebands 𝑃𝑝 ∝ 𝑁 called incoherent 

 Transverse peaks comprises of
- replication of coherent long. structure 
- incoherent base might be visible

Remark: Spectrum can be described by lengthy formula

see e.g. S. Chattopadhay, CERN 84-11 (1984)
Remark: Height of long. band depends 

center of the beam in the pickup  

spectrogram fast span: 0.1 MHz

high resolution: 0.1 MHz span, 1 s

10 dB

10 dB 10 kHz

10kHz

fs  2 kHz

f = 0.1MHz

t =2s 

long. bandlower SB upper SB

q

long. band

lower SB upper SB

Example: GSI Ekin = 11.4 MeV/u, harmonics h = 119  
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Transverse Schottky Analysis for bunched Beams at LHC

Schottky spectrogram during
LHC ramp and collision:
The interesting information is in the 
incoherent part of the spectrum
(i.e. like for coasting beams)

 Longitudinal part
- Width:  momentum spread

 Transverse part
- Center:  tune 
- Width:  chromaticity

difference of lower & upper SB
- Integral :  emittance

Example: LHC nominal filling with Pb82+ ´,harm. h  4105

 acceleration  & collisional optics within  50 min

injection collision

lower trans.SB

upper trans.SBlong.part

frequency offset f – 4.81 GHz [kHz]
-4 -2 0 2 4

synchr. SBs

CERN: M. Betz et al. IPAC’16, p. 226 (2016), 
M. Betz et al., NIM A 874, p. 113 (2017)

FNAL realization and measurement: 
A. Jansson et al., EPAC’04, p. 2777 (2004) & 
R. Pasquinelli, A. Jansson, Phys. Rev AB  14, 072803 (2011)
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LHC 4.8 GHz Schottky: Tune and Chromaticity Measurement 

M. Betz et al. IPAC’16, p. 226 (2016), 

M. Betz et al., NIM A 874, p. 113 (2017)

Chromaticity from width of sidebands
of incoherent part:
 Two different offline algorithms 
 Satisfactory accuracy  
 Time resolution here 30 s
 Performed at MD time, breaks are due

to experimental realignments 
Comparison to traditional  method  (red dots):
 Change of bunching frequency  p  =  pactual – p0

 Tune measurement and fit Q /Q0 =   p/p0

Tune from position of sideband:
Permanent monitoring of tune 
 Without excitation
 High accuracy down to 10-4 possible  
 Time resolution here 30 s 
Comparison to BBQ system based on:
 Transverse (gentle) excitation
 Bunch center detection
 Time resolution here 1 s

time duration  3 h

c
h
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a
ti
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y
 Q

’ 
=

 
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0

time duration  5 h

change to collisional optic.
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Challenge for bunched beam Schottky: 
Suppression of broadband sum signal to prevent for saturation of electronics
Design consideration:
Remember scaling: width f  h, power P  1/h
 Low sum signal i.e. outside of bunch spectrum

(LHC: acceleration by facc = 25 MHz) 
 Avoiding overlapping Schottky bands
 Sufficient bandwidth to allow switching
Technical choice:
 Narrow band pickup by two wave guide

for  TE10 mode, cut-off at 3.2 GHz
 Coupling slots for beam’s TEM mode
 center fc =4.8 GHz  harm. h  4105

& BW0.2 GHz   

LHC 4.8 GHz Schottky: Technical Design of slotted Waveguide

CERN: M. Wendt et al. IBIC’16, p. 453 (2016), M. Betz, NIM A 874, p. 113 (2017)
FNAL: R. Pasquinelli et al., PAC’03, p. 3068 (2003) & R. Pasquinelli, A. Jansson, Phys. Rev AB  14, 072803 (2011).

E-field in wave guide

beam pipe
60 x 60 mm2

wave guide
47 x 22 mm2

270 slots of 2 x 20  mm2

top signal out

buttom out

for calibration

Photo of 1.8 GHz 

Schottky pickup 

at FNAL recycler

beam

wave guide

port

1 m
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Outline:

 Introduction to noise and fluctuations relevant for Schottky analysis

 Main part: Schottky signal generation and examples for the following case:

 Longitudinal for coasting beams 

 Transverse for coasting beams

 Longitudinal for bunched beams

 Transverse for bunched beams

 Some further examples for exotic beam parameters 

 Conclusion 
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Deformed Schottky Spectra for high Intensity coasting Beams

Example: Coasting beam GSI synchrotron Ar18+ at 11.4 MeV/u, harm. h = 40, coherent Qcoh  0

Transverse spectra can be deformed even at ‘moderate’ intensities for lower energies
Remember: Transverse sidebands were introduced as coherent amplitude modulation
Goal: Modeling of a possible deformation leading to correct interpretation of spectra

Extracting parameters like tune spread Qincoh by comparison to detailed simulations 

N = 1.1  1010, p/p0 = 7.8  10-4

estimated Qincoh= 0.053 

N = 3.9  109, p/p0 = 6.7  10-4

estimated Qincoh= 0.019

N = 4.5  108, p/p0 = 2.5  10-4  

estimated Qincoh= 0.001

N = 1.1  1010

N = 3.9  109

N = 4.5  108

lower transverse sideband 

fitfit

upper transverse sideband 

Method: 
 Calculation of space charge & impedance modification  
 Calculation of beam’s frequency spectrum
 Comparison to the experimental results 
 Model delivers reliable beam parameters, spectra can be explained
Schottky diagnostics: 
 Spectra do not necessarily represents the distribution, but parameter can be extracted

O. Boine-Frankenheim et al., Phys. Rev. AB 12, 114201 (2009) , S. Paret et al., Phys. Rev. AB 13, 022802 (2010)  
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Longitudinal Schottky: Modification for very cold Beams

Very high phase space density leads to modification of the longitudinal Schottky spectrum  

L.J. Mao et al. IPAC’10, p. 1946 (2010)

Example: at CSRe cooler ring in Lanzhou, China
Beam: Ar18+ at Ekin = 21 MeV/u, harm. h  100  

Low energy electron cooler ring:
High long. & trans. phase space density
 Strong coupling between the ions
 Excitation of co-&counter propagation 

plasma waves by wake-fields (beam impedance)
This collective density modulation is a coherent effect!
 Schottky spectrum comprises then 

coherent part with power scaling P  N2

+ the regular incoherent part with P  N
 Schottky doesn’t represent distribution e.g.   p/p0

but p / p0 can be gained from model fit   

S. Chattopadhay, CERN 84-11 (1984)

beam current 

p / p0  510-5
p / p0  310-5

≠
∆𝒑

𝒑𝟎

meas.

fit

=
∆𝒑

𝒑𝟎

Ibeam = 330 µA Ibeam = 60 µA
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cavity off &     

debunching

bump

bunched coasting

Position measurement with BPMs for a coasting beam

Beam: Ekin = 800 MeV/u, f0 = 0.99 MHz, frf = 4.92 MHz, Ibeam = 10 mA

BPMs for coasting Beam by Schottky Analysis  Proof of Principle 

BPM

Utop

Ubottom

A
D

ADC
125MS/s

A
D

comb 
filter

comb@hf0 f=1kHz 
posi

t =  24 ms

Steps of beam manipulation:
1. Bunched beam acceleration
2. Closed bump in one section

 regular closed orbit 
measurement with 
with 80 µs time steps 

 Position resolution x  1 mm at t  10 ms time steps for coasting beam
e.g. useful for slow extraction  or cooling observation 

BPM data treatment:
1. Digital comp filter at 

Schottky harmonics 
f(h) for h = 1 ... 8 
width f = 1 kHz

one turn

t =  192 ms

one turn

3. Cavity switch off 
& frequency detuning
 beam de-bunches

2. Time binning average 
with 8 ms steps

Coasting beam spectrum 
without filter

Schottky lines

ADC ‘ghost lines’ 

slow 

extraction
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Is this the incoherent 
frequency spread  p / p0 ?
No, but bunchs’ ampl. & phase variation!

Experiment at GSI: broadband pickup & oscilloscope

(Schottky in synchrotron: Incoherent width fh  h )

Longitudinal Schottky at a LINAC ???

h=1

h=4
h=12

h=15

Is it possible to measure the momentum spread at a single pass accelerator 
i.e. is there an incoherent  contribution to the bunch spectrum?

LINACsource

pickup

buncher

P. Kowina et al., HB’12, p. 538 (2012)

50mm

annular electrode

FFT average over 100 pulse of 0.1 ms duration

Beam: U28+ at 11.4 MeV/u, facc = 36 MHz

coherent 
peak

Result:

Peak structure 

does not change

for different 

‘harmonics’ h:

 no incoherent 

Schottky part!

Supported by spectra 

recorded with a 

cavity @ 1.3 GHz

of high h and sensitivity

Interpretation:

Schottky signals require the periodic passage of the same particle 

to ensure the correlation to build up.  

 Result: Probably not possible 

p
o
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r 
[d

B
]

frequency [MHz]

h=15

h=4

h=4

cavity1.3 GHz 
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Schottky signals are based on modulations and fluctuations:

Modulation coherent quantities:    

 Measurement of f0, Q0 & fs from peak center frequent usage by GSI operators 

Fluctuation  incoherent quantities: 

 Measurement of p/p0 &  from peak width  frequent usage for p/p0 by GSI operators

 signature of fs & Q from peak shape  for machine development only at GSI 

General scaling: incoherent signal power P(h)  q2 N / h and width f(h)  h

q: ion charge state, N: number of  ions, h: harmonics 

Signal spectrum: Partly complex, but computable for ‘regular’ cases

High intensity beams: Characteristic modifications, important for model verification

Detection:  Recordable with wide range of pickups, measurement possible in each harmonics

 Electronics for very weak signals must be matched to the application

Summary

For valuable discussion I like to thank:

 P. Kowina GSI, R. Singh GSI, M. Wendt CERN for very intense discussion

 M. Betz LBL (formally CERN), O. Boine-Frankenheim GSI,  O. Chorniy GSI, P. Hülsmann GSI , 

A. Jansson ESS (formally FNAL),  A.S. Müller KIT, M. Steck GSI, J. Steinmann KIT and many others  

Thank you for your attention!
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Summary

Spare slides
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Longitudinal Schottky at a LINAC ???  No !!!

Beam: U28+ at 11.4 MeV/u, facc f0 = 36 MHz, Iberam =0.2 mA, average of 100 pulse with 0.1 ms duration
No final bunching (File 32)Final bunching (File 34)
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Hadron synchrotron: most beams non-relativistic or  < 10 (exp. LHC)  no synch. light emission
 stationary particle movement  turn-by-turn correlation  

Electron synchrotrons relativistic   5000  synchrotron light emission
 break-up of turn-by-turn correlation ?

Schottky Spectrum at Synchrotron Light Sources 

K.G. Sonnad et al., PAC’09, p. 3880 (2009)

Test of longitudinal Schottky at ANKA (Germany):
Goal: determination of momentum spread p / p0

Ring shaped electrode as broadband detector

Results:

 Narrow coherent central peak

 Synchrotron sidebands clearly observed

 Sideband wider as central peak 

 incoherent cntribution

 Ratio of power Pcentral / PSB as expected

 Attempt started, feasibility shown!

Further investigations are ongoing

fcenter = 0.465 GHz 

h = 172
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Example: ANKA at 2.5 GeV
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Example:  Observation of longitudinal momentum at GSI storage ring 
 Ion beam: U92+ at 360 MeV/u applied to electron cooling with Iele = 250 mA
 Variation of stored ions by lifetime of   10 min i.e. total store of several hours
 Longitudinal Schottky spectrum with 30 s integration every 10 min 
 Momentum spread (1): p/p = 10-4  below 10-6 when reaching an intensity threshold

Interpretation: 
 Intra beam scattering as a heating mechanism is suppressed below the threshold
 Ions can’t overtake each other, but building a ‘linear chain’ (transverse size x < 30 µm)
 Momentum spread is basically given by stability of power suppliers 

M. Steck et al., Phys. Rev. Lett 77, 3803 (1996), R.W. Hasse, EPAC 00, p. 1241 (2000)

Electron Cooling: Linear Chain by Minimal Momentum Spread

reflection

probability
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Transverse rms Emittance Determination by Schottky Analysis at RHIC 

The integrated power in a sideband delivers the rms emittance 𝑃ℎ
± ∝ 𝑑2 ∝ 𝜀𝑟𝑚𝑠𝛽

Example: Schottky cavity operated at dipole mode TM120 @ 2.071 GHz & TM210 @ 2.067 GHz
i.e. a beam with offset excites the mode (like in cavity BPMs)
Peculiarity: The entire cavity is movable   the stored power delivers a calibration P(x)

K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), W. Barry et al., EPAC’98, p. 1514 (1998)

TM120& TM210 mode cavity

Result: rms emittances coincide with IPM measurement within the 20 % error bars

power in long  band 
depend on beam position x 

upper SBlower SB

Schottky cavity 

drive

drive
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Longitudinal Schottky Noise Analysis for acceleration Ramp Operation

Example for longitudinal Schottky spectrum to check proper acceleration frequency:
 Injection energy given by LINAC settings, here Ekin =11.4 MeV/u  = 15.5 %, p/p  10-3 (1) 

 multi-turn injection & de-bunching within  ms

 adiabatic bunch formation & acceleration

 Measurement of revolution frequency frev

 Alignment of acc. frf to have frev = h  frf

i.e. no frequency jump !
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Example: Coasting beam at GSI synchrotron at injection  
Ekin = 11.4 MeV/u  = 15.5 %, harmonic number h = 119  

Example of longitudinal Schottky Analysis for a coasting Beam

Application for coasting beam diagnostics: 

 Injection: momentum spread via 
Δ𝑝

𝑝0
= −

1

𝜂
∙
Δ𝑓ℎ

ℎ 𝑓0
as influenced by re-buncher at LINAC

 Injection: matching i.e. fcenter stable at begin of ramp

 Dynamics during beam manipulation e.g. cooling

 Relative current measurement for low current below the dc-transformer threshold of  1µA

fast span: 1 MHz

5 dB 0.1 MHz

10 kHz

5 dB

high resolution: 0.1 MHz span, 0.1 s

fh  hp

spectrogram 

 p/p0  10 -3

t =0.2s 

f =1MHz

fcenter = 25.7MHz 
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Example of Chromaticity Measurement at Tevatron

Permanent chromaticity monitoring at Tevatron:
 Sidebands around 1.7 GHz i.e. h  36,000

with slotted waveguide, see below for CERN type
 Gated, down-mixing & filtered 

by analog electronics 
 Gaussian fit of sidebands

Center  tune q
Width   chromaticity  via f +- f -

 momentum spread p/p via f ++ f -

A. Jansson et al., EPAC’04, p. 2777 (2004) & R. Pasquinelli, A. Jansson, Phys. Rev AB  14, 072803 (2011)

Remark: Spectrum measured with bunched beam and gated signal path, see below

12 hours 12 hours
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