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Shot Noise for free Charge Carriers (here Electrons) =5

Emission of electrons in a vacuum tube:
W. Schottky, ‘Spontaneous current fluctuations in various electrical conductors’, Ann. Phys. 57 (1918)
[original German title:‘Uber spontane Stromschwankungen in verschiedenen Elektrizititsleitern’]

Result: Emission of electrons follows statistical law = white noise

Physical reason: Charge carrier of final mass and charge Class tube

\ I'iig ‘%‘// Anode

__ Grid

Walter Schottky (1886 — 1976): ] el
» German physicist at Universities Jena, ,LHeater

Wirzburg & Rostock and at company Siemens
Investigated electron and ion emission from surfaces
Design of vacuum tubes

Super-heterodyne method i.e spectrum analyzer

Solid state electronics e.g. metal-semiconductor interface
called ‘Schottky diode’

No connection to accelerators

YV VYV

A\

Source: Wikipedia
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Shot Noise for free Charge Carriers (here Electrons) =5

Emission of electrons in a vacuum tube:
W. Schottky, ‘Spontaneous current fluctuations in various electrical conductors’, Ann. Phys. 57 (1918)
[original German title:‘Uber spontane Stromschwankungen in verschiedenen Elektrizititsleitern’]

Result: Emission of electrons follows statistical law = white noise

Physical reason: Charge carrier of final mass and charge for single pass arrangement
Assuming: charges of quantity e, N average charges per time interval and zduration of travel

. 2.N Inoise
fluctuations as I,,,;5, = V< I? >= € — VN @ current I, . (1)
Inoi : o
& 22 o \J1/y , L, is total current A vacuum
ItOt \/d’ v 1 e tube
This is white noise i.e. flat frequency spectrum R - =LII}\IAC
It is called shot noise ! -I|+
I
‘Schottky signals’ in circular accelerators of multiple passages: Schottky pickup

This is not shot noise!
But the fluctuations caused by randomly distributed particles detected
by the correlation of their repeating passage at one location!

= The frequency spectrum has bands i.e. not flat synchrotron
Schottky signal analysis: Developed at CERN ISR ~ 1970t"
for operation of stochastic cooling

rev. time
t,= 1/,

injection extractio
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Outline:

» Introduction to noise and fluctuations relevant for Schottky analysis
» Main part: Schottky signal generation and examples for:
» Longitudinal for coasting beams
» Transverse for coasting beams
» Longitudinal for bunched beams
» Transverse for bunched beams
» Some further examples for exotic beam parameters
» Conclusion

Remark:
Assumption for the considered cases (if not stated otherwise):
» Equal & constant synchrotron frequency for all particles = Af,,, = 0

» No interaction between particles (e.g. space charge) = no incoherent effect e.g. AQ
» No contributions by wake fields = no coherent effects by impedances e.g. AQ

=0

incoh

coh
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Longitudinal Schottky Analysis: 15t Step ES

Schottky noise analysis is based on the power spectrum
for consecutive passage of the same finite number of particles

| Particle 1 rotates with £, =1/f, , Particle 1: lines at f; = h,
I(v) 1(p)

Fourier trans. or
‘ spectrum analyzer
_
0 1 2 3 4 - 0 1 2 3 4

timet/t, harmonic numberh=f/f,

Particle 1 of charge e rotates with t, = 1/f, : _
Current at pickup I1(t) = efy - Xhe—oo 6 (t — hty) Schottky pickup

= L(f) =efy + 2efy: Xr=16(f — hfy) Uleft_|_

i.e. frequency spectrum comprise of d-functions at hf,

rev. time
ty=1/fy

This can be proven by Fourier Series for periodic signals
(and display of positive frequencies only)

injection “extractio
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Longitudinal Schottky Analysis: 15t Step ES

Schottky noise analysis is based on the power spectrum
for consecutive passage of the same finite number of particles

Particle 1 rotates with t, =1/f, Particle 1: lines at f; = h f,
I(t) 1 Particle 2 rotates t, -1/(fo+ Af) I(f) Particle 2: lines at f, = h-( f, + Af)

Fourier trans. or
‘ _>| |(_ h-Af

spectrum analyzer
3 4 0

12 3 4
t|me t/t, harmonic numberh=f/f,

Particle 1 of charge e rotates with t, = 1/f, : _
Current at pickup I1(t) = efy - Xhe—oo 6 (t — hty) Schottky pickup

Uet
= L(f) = efy + 2efy - Tiey 8(f — hfo) e
Particle 2 of charge e rotating with t, = 1/( f,+ Af) :
Current at pickup I(t) = efy *© Xpe_oo 0(t — hty)
= L(f) =efo+2efy - Xp=1 6(f —h-[fo +Af ]

Important result for 1t step:
» The entire information is available around all harmonics
» The distance in frequency domain scales with h-Af

rev. time
t,= 1/f,

Particle 2 Particle 1
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Longitudinal Schottky Analysis: 2"d Step =5

Averaging over many particles for a coasting beam:
Assuming N randomly distributed particles characterized by phase 6,, 6,, ¢, ... 6,
with same revolution time t, = 1/ f, < same revolution frequency f,

The total beam currentis: 1(t) =ef ZCOS@ + 2¢ef ZZCOS(Zﬂf ht+hé.)

n=1 h=1

For observations much longer than one turn: average current (I);, = 0 for each harm. h =1
but In a band around each harmonics h the rms current I..,,,.(h) = /{I?);, remains:

N 2
(17) = (ZGfOZCOS(hGn )] = (2ef, )’ -(cosh@, +cosh@, +...cos h@,, ¥
n=1

=(2ef, )’ - N{cos’h6, ) = (2ef, )’ - N -

I\JII—\

=2e°f’-N due to the random phases 8,

The power at each harmonichis: B, = Zt<| 2>h =2Z.¢e*f/-N
measured with a pickup of transfer impedance Z,

Important result for 2" step:

» The integrated power in each band is constant and P, oc N
Remark: Random distribution is connected to shot noise & W. Schottky (1918)
Regular BPM processing for bunched beams: P,8PM oc N2
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Longitudinal Schottky Analysis: 3¢ Step =5 10

Introducing a frequencies distribution for many particles:

. . . . N dP _ 2 _ 2 2 d_N
The dependence of the distribution per band is: —df Zt df(l ) =2Zie“ fg N i
dpP fo 1 dN
Inserting the acc. quantity L = hn -2 leadsto: “Lh=pz.e2p,n.L0.L1. 4N
g q Y fo n: af t€~Po nondp
Important results from 1%t to 3" step: w0l Example:
. dPp . z° | ﬂ ------- o 1 Gaussian
» The power spectral density T3 in each band g Ap/p = 2%
. . . . dPh dN ‘g a 77 =
reflects the particle’s momentum distribution: T (0'¢ . 2107 -
g
» The maxima of each band scales ﬂ] o = g overlap
f max h 2 ‘ ‘ | . | . | .
Measurement: Low f preferred for good signal-to-noise ratio 6 s 10 12 14
harm. of revolution freq. h =
» The width increase for each band: % < h U'eft_l_ Usum

Measurement: High f preferred for good frequency resolution
dpP .
» The power scales only as d—fh & N due to random phases of particles
i.e. incoherent single particles’ contribution

. dp . :
» Forions A% the power scales d—fh x g% = larger signals for ions

Remark: The ‘power spectral density’ df is called only ‘power’ P, below
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Pickup for Schottky Signals: Capacitive Pickup =5 I

A Schottky pickup can be like a capacitive BPM:

» Typ. 20...50 cm insertion length

» High position sensitivity for transverse Schottky
» Allows for broadband processing ele. feedthi
» Linearity for position not important N-type '

Example: Schottky pickup at GSI synhrotron

Example: 50 QQ Schottky for HIT, Heidelberg
operated as capacitive (mostly) or strip-line

horizontal pickup

, e horizontal ~ =1l
L .
.\"\ TR 4 - -
R o /] | pickup in CF200
‘ - ‘17dnﬁ* 50 Q geometry
é50mm Typical transfer impedance
\ C|:Qg;250* : z 10 . Challenge for electronics:
% S . » Low noise amplifier
Transfer impedance: £y far~30MHz . 3> Multi stage amplifier:
Coupling to beam U0 = Z; * lpegm Rt eeler g 1200 prevent for signal saturation
Typically Z,= 1 Q, R=50 Q, C~ 100 pF 107} Lyttt
:>fcut = (RC)'l ~ 30 MHz frequency f [MHz]

—> operation rang f=30 ... 200 MHzi.e. above f,,, & below signal distortion
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Longitudinal Schottky for Momentum Spread 4p/p, Analysis

Momentum spread A p/p, measurement after
multi-turn injection & de-bunching of t < 1ms duration

to stay within momentum acceptance during acceleration

Method: Variation of buncher voltage
i.e. rotation in longitudinal phase space
— minimizing of momentum spread A p/p,

LINAC bunches at injection:
long. phase space

<
Q
<

). 3

AL

n
«Q

o u

o~

time or phase

LINAC buncher

time or phase

De-bunching after some ms:

long. phase space
de-bunching

} Schottky

UIeft |

Schottky
pickup

injection extr
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synchrotron

action

10

| de-bun:ched

Example: 1010 U%%* at 11.4 MeV/u

injection plateau 150 ms, n = 0.94
Longitudinal Schottky at harmonics h =117

Momentum spread variation:
Ap/p =~ (0.6... 2.5) -103 (10)

31 MHz

~ . '3
‘ﬂﬁrﬁ/p 2 2.5-10

i %W i

feonter = 24:9 MHZz 35 kHz
. . 3 ] et

"Ap/p~1.3-103

— Aplp~0.6-103
A AfechiAp
i vt

beam

ARIES Workshop CERN, 15™ of May 2018



Electron Cooling: Monitoring of Cooling Process =5 I

Example: Observation of cooling process at GSI storage ring Schottky pickup

lon beam: 102 protons at 400 MeV Uleft_l_ Usum
Electron beam I, = 250 mA

Momentum spread (1c): Ap/p =4 -10* — 3 -10 within 650 s Uright

a

o Tme/dv: = -1

223s M3 dBr
» RBW:

2.00 kHz
4 VBW:
50 M2

3D

Feenter = 245 MHZ
< h=124

» Pos:
40.0 mdw
[Autoscale | = CF: 244.7768 MHz & D A0

J. RoBbach et al., Cool 2015, p. 136 (2015)

Application:
» Alignment of cooler parameter and electron-ion overlap
» Cooling force & intra-beam scattering measurement
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Pillbox Cavity for vey low Detection Threshold

Enhancement of signal strength by a cavity
Example: Pillbox cavity at GSI and Lanzhou storage ring for with variable frequency

100mm

beam

CF250

ceramic
gap

Advantage:

» Sensitive down to single ion observation

Outer I, 600 mm
Beam pipe I, 250 mm
Mode (monopole) | TMy,,
Res. freq. f,., ~ 244 MHz
Variable by plunger | £2 MHz
Quality factor Q, ~ 1100
Loaded Q, ~ 550
R/Q, ~30Q
Coupling Inductive
loop

Eiong TM,,, cavity

> Part of cavity in air due to ceramic gap Leam >

» Can be sort-circuited to prevent for
wake-field excitation

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC’11, p.107 (2011), F. Suzaki et al., HIAT 15, p.98 (2015)
For RHIC design: W. Barry et al., EPAC’98, p. 1514 (1998), K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009)

P. Forck, GSI: Introduction to Schottky Measurements
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Pillbox Cavity for single Ion Detection LE R =]

Observation of single ions is possible:
Example: Storage of six #?2Pm>%* at 400 MeV/u during electron cooling

\ mom. spread: Ap/p =6.6 - 10°

i >

H e e e i = 1 2 e s
100mm each trace meas. for 32 ms —=

large initial E—_“E_—‘:‘:,:E_‘

beam
CF250
ceramic
gap

fres = 244.965 MH 0frequency f—f. [kHZ]
Application:

» Single ion observation for basic accelerator research

» Observation of radio-active nuclei for life time and mass measurements

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC’11, p.107 (2011), F. Suzaki et al., HIAT 15, p.98 (2015)
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Outline of the tutorial:
» Introduction to noise and fluctuations relevant for Schottky analysis
» Main part: Schottky signal generation and examples for the following case:
» Longitudinal for coasting beams
» Transverse for coasting beams
» Longitudinal for bunched beams
» Transverse for bunched beams

Y

Some further examples for exotic beam parameters

Y

Conclusion
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Transverse Spectrum for a coasting Beam: Single Particle =S

Observation of the difference signal of two pickup electrodes:

Betatron motion by a single particle 1 at Schottky pickup: Schottky pickup
Displacement: x1(t) = A; - cos(2mqf,t)

Udiff

A,: single particle g: non-integer part of tune
trans. amplitude

Dipole moment: d(t) = x,(t) - I(t)

— N

transverse part longitudinal part
equals ‘signal’ equals ‘carrier’

Pickup voltage: U, (t) = Z, - d,(t)

Example: g =0.21

5

8 — —]
E.1'D (] o e »

Sos @ E
&

Ehu.s = y * -
Egm . .
- 2 4 B B 10

normalized time th
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Transverse Spectrum for a coasting Beam: Single Particle =S

Observation of the difference signal of two pickup electrodes:

Betatron motion by a single particle 1 at Schottky pickup: Schottky pickup
Displacement: x1(t) = A; - cos(2mqf,t)

Udiff

A,: single particle g: non-integer part of tune
trans. amplitude

Dipole moment: d(t) = x,(t) - I(t)
/ \
transverse part longitudinal part
I ’ I ier’
Insertln(?;qllé?\gltsﬂI |nnaal Fourier sglc’lllég Sdc a(}lﬁr:
efy A1+ 2efody - Ty coS(2mqfyt) - cos(2mhfyt)
=efo: A1+ efodr + Xp=1cos(Zr[h — q]fot) - cos(2r[h + q]fot)

longitudinal Schottky » (ransverse Schottky
A amplitude modulation; betatron 31debands
left & right sideband f \ /
‘ with distance g | | ,
_at each harmonics | I | | l | | : |
h-1 h  h+l h+qh+1
frequency 1/t frequency f/f,
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Principle of Amplitude Modulation =50

Composition of two waves:
» Carrier: For synchrotron— revolution freq. f, = 1/t, Mﬁnnm
U:(t) = Ug - cos2mfyt)

» Signal: For synchrotron— betatron frequency fp=q -fo| . | ] - _
g < 1 non-integer part of tuneQ=n+gq [N, AR
Ug(t) = ﬁﬂ - cos(2mqfpt) | |

Source: wikipedia

Py

Amplitude multiplication of both signals Mg = TB =1 Examp/e 9= Oll Uﬂ‘ UC

C

= U, (t) = [UC + UB - cos(anfOt)] - cos(2mfit)
= U, cos(2mfyt)
+1/, Upg - [ cos(2r[1 — qlfot) + cos(2r[1 + qlfot) ]

o 2 4 6 8 10

normalized time t/t,
Using: cos(x) - cos(y) = 1/, [cos(x — y) + cos(x + y)] lower carrier upper
& [ sideband sideband
= | —
£ q
Remark: e r T
m L -
Pickup difference signal = central carrier peak vanish . .
if beam well centered in pickup 09 10 11

normalized frequency f/f,
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Transverse Spectrum for a coasting Beam: Many Particles =S

Observation of the difference signal of two pickup electrodes:

Betatron motion by two particles at pickup: Schottky pickup
Displacements: x1(t) = A, - cos(2mq, fot)

Udiff
x2(t) = A, - cos(2mq;, fot + @)
Example: q,=0.21 & : q,=0.26
Sl e o ]
S 00 Y o
g—U.E - ‘ : ,-"; —
5 0 2 4 6 8 10 Exanzple: Q=4.21, Ap/po =2-103, n=1£&=-1
normalized time t/t, . . . . . . . . .
L. . B long. h=10 long. h=11 7
Transverse Schottky band for a distribution:  lower SB  upper SB lower SB upper SB |

fio f1o* fir T
q q

» Amplitude modulation of
longitudinal signal (i.e. ‘spread of carrier’)
» Two sideband centered at f,i*=(h* q)-f, 1
= tune measurement - A I /\ ’l\‘
» The width is unequal for both sidebands T S W AL - A W T
9.5 100 105 11.0 115
normalized frequency f/f

- <> <> -

power

(see below)
» The integrated power is constant (see below)
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Example for Tune Measurement using transverse Schottky =S

Example of a transverse Schottky spectrum: Example: Horizontal tune Q, = 4.161 — 4.305
» Wide scan with lower and upper sideband within 0.3 s for preparation of slow extraction

> Tune from central position of both sidebands Beam Kr33* at 700 MeV/u,
B fr - f,=1.136 MHz < h = 22
q="n- fro+rn Characteristic movements of sidebands visible
» Sidebands have different shape
» Tune measurement without beam influence

—> usage during regular operation

Frequenc Acquisition Length: 493.84 ms

Span:
Input Att:

) I N I
dm==m-m-m---

1
Span: 1 MHz
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Sideband Width for a coasting Beam

Calculation of the sideband width:
The sidebands at f,*=(ht q)-f, comprises of

» Longitudinal spread expressed via momentum?

& n- p (7: freq. dispersion)
fo Po
» Transverse tune spread AQ = Agq
for low current dominated by chromaticity
ba_ g bp_ £ 8
Qo po 1 fo

Depictive Example: n=1, £=-1

| 9,>q, | 4,>do
P Sl !

i PR— i N5 ;

1 qg,<q 111 qg,<q 1

: 1 0 |)i(| 1 0 :

1€ - 3

9% il e [

Reference particle: tune q,
Particle 1 withp, >p,=q;=q,- | E-Ap, /Py | <q,
Particle 2 withp,<p,=q,=q,+ | -Ap,/p, | > q,

P. Forck, GSI: Introduction to Schottky Measurements 20
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Sideband Width for a coasting Beam =S

Calculation of the sideband width: Example: Q = 4.21, Ap/p,=2-103, np=1, £=-1
The sidebands at f,*=(ht q)-f, comprises of -
> Longitudinal spread expressed via momentum [ long. h=10 long. h=11

Af p | lower SB upper SB lower SB upper SB |

~L=17- 1A7_ (77: freq. dispersion)
0

fo fi0 f1o" fir fir’

» Transverse tune spread AQ = Agq q
for low current dominated by chromaticity Afl" ﬂ
Aq Ap _ § Af f1c
H=f.==2.2 H
Qo po 1 fo - .
10 0 105 110 115
normallzed frequency f/f

power
] ]

Using f,f=(h * q)-f, & product rule for differentiation
— lower sideband : Af, =(h—q) -Afp,— Aq- fo = nA—p-fO (h —q —EQO)
—> upper sideband: Af,t =(h+q) - Af,+ Aq- fo= n— fo (h +q+= QO)
o

long. part trans. chromatic coupling

Results:
» Sidebands have different width in dependence of Q, n7and &
i.e. ‘longitudinal = transverse * coupling’” = ‘chromatic tune’
» The width measurement can be used for chromaticity & measurements
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Power per Band for a coasting Beam & transverse rms Emittance =S

Dipole moment for a harmonics h for a particle with betatron amplitude A:
d,(hf) = 2efyA,, - cos(2rqfyt + 0,,) - cos(2mhfyt + @,)
Averaging over betatron phase 6, and spatial distribution for the n = 1...N particles:
— (d?) = e2f,* -N/2-(A%) -N/2
with (42%) = xrms2 = &-msf square of average transverse amplitudes
— P,* «(d?) = eszZ y - ErmsP With g, transvers emittance and Bfunction at pickup
Results: 2
» Power Phi is the same at each harmonics h

» Power decreases for lower emittance beams (due to decreasing modulation power)
= measurement of rms emittance is possible.

: . longitudinal
Example for sideband behavior: & I
Emittance shrinkage during stochastic cooling at GSI lower SB *& upper SB
» Width: smaller due to longitudinal cooling i ll
» Height: = constant due to transverse cooling =1.25% Mﬁ&‘ Ao | \ “‘:/"
ot : R t=1.25 ! »/f*‘h?w %w
» Power P;,— decreases = emittance determination, ) ;y;f‘»‘rw!p ‘#ﬁ J]p, o
i i r\"‘
but requires normalization by profile monitor ; ;;,. ‘, m "" Q5

Movable Schottky cavity at RHIC = absolute calibration for &

12087 12997 1.3ob7
see K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), frequency [GHz]
W. Barry et al., EPAC’98, p. 1514 (1998) F. Nolden, DIPAC’01, p. 6 (2001)
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Outline:

» Introduction to noise and fluctuations relevant for Schottky analysis

» Main part: Schottky signal generation and examples for the following case:
» Longitudinal for coasting beams
» Transverse for coasting beams
» Longitudinal for bunched beams

> Transverse for bunched beams

Y

Some further examples for exotic beam parameters

Y

Conclusion
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Principle of Frequency Modulation & bunched Beam Schottky =S

Frequency modulation by composition of two waves:

» Carrier: For synchrotron — revolution freq. f, = 1/t,
U.(t) = U, - cos(2mfyt)

» Signal: For synchrotron — synchrotron freq. f, = Q; - f,
Q, < < 1 synchrotron tune i.e. long. oscillations per turn
T,(t) = T, - cos(2mfit) R

Frequency modulationis: U;,;(t) = U -

oS (anot + m; - fot Ts(t’)dt’)

= Uc - cos (anot + 55 - sin(2r fit) ) "t cavity
A
FM

Source: wikipedia
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Bunched Beam: Longitudinal Schottky Spectrum for a single Particle =S

N

Frequency modulation by composition of two waves: _ 1.0 Bessel function J
» Carrier: For synchrotron — revolution freq. f, = 1/t, = J; 5, 4,
U.(t) = U, - cos(2mfyt) S057 T
> Signal: For synchrotron — synchrotron freq. f,=Q, -f, 5
Q, < < 1 synchrotron tune i.e. long. oscillations per turn & O'O
T,(t) = T, - cos(2mfit) ®
-0. 5 1 P T
Modification of coasting beam case by synchrotron oscillation: ° 4 x & 8 10
o ~ 10 T4 T T T T T T
A~ == T ix=1 E
[1(t) = efy + 2efy Zh cos {2mhfy[t + Tscos(2rfst + ) ] }g oz tlower SBs upper SBs
=0 3 E
10°F 1

Each harmonics h comprises of lower and upper sidebands:

zoo Jp2rhfyTs) - cos(2mhfyt + 2mpfit + py)
p=—00

square of Bessel func

107 3
105 3
10°F
10'?%] *

8
10 4 -2 0 2
normalized frequency (f

10 'x=0.1 JOQ(x=0.1)
9 ¢ lower SBs upper SBs

For each revolution harmonics h the longitudinal is split
» Central peak at hf, with height Jo (2 - hfy - T5)

» Sidebands at hf, £ pf, with height J, (2 - hf; - T) % 1;4 J4%(x=0.1 1, %(x=0.1) §
Note: é 125 J,2(x=0.1) J,2(x=0.1) f
» The argument of Bessel functions contains 5 127: | | :

amplitude of synchrotron oscillation 7, & harmonics h 7 ook D S I
» Distance of sidebands are independent on harmonics h normalized frequency (f ) /1,
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Bunched Beam: Longitudinal Schottky Spectrum for many Particles =S

Particles have different amplitudes 7 and initial phases y
—> averaging over initial parameters for n = 1...N particles:

Uert | Usum

Uright
l initial
phase y

rf cavity

Results:
» Central peak p = 0: No initial phase for single particles 7,(t)
Up(t) « Jo (2 - hfy - T5) - cos(2mhfyt)
= Total power P, ,;(p = 0) o N?
i.e. contribution from 1...N particles add up coherently
= Width: o, _,= 0 (ideally without power supplier ripples etc.)
Remark: This signal part is used in regular BPMs
= this is not a Schottky line in a stringent definition
» Side bands p # 0: initial phases y appearing
Up(t) x J, 2m - hfy - T5) - cos(2mhfyt + 2npfst + py)
= Total power P;,;(p +# 0) x N
i.e. contribution from 1...N particles add up incoherently . .

bunch

Fx=0.1  |o2(x=01)

= Width: o, a p - Af, lines getting wider 5 Ezj lower SBs | upper SBs
due to momentum spread Ap / p, & S 400f J44x=0.1 J;2(x=0.1) ]

ossible spread of synchrotron frequency A 2 10°F
p p y q y .fs % - r J_ZZ(Xzo_ ) 22(X=0.1)—§

-

Example for scaling of power: JINWAL
IfN - 1010 then PtOt(p = O) ~ 100dB . PtOt(p == 0) 4 -2 0 2 4

normalized frequency (f -f )/ f_

N T SN

o o o o

S N & &
m
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Example: Bunched beam at GSI synchrotron s o AcaulsitionLLength: 2
H H Input Att: 10 dB
Beam: Injection E,;, = 11. 4 MeV/u harm. h =120 Shaetiogram ~ fast span: 0.1 MHz
. . B I[:
Application for ‘regular’ beams: i o |10dB : 10kHz

—

» Determination of synchrotron frequency f;
» Determination of momentum spread:
- envelope does not represent directly
coasting beam
= not directly usable for daily operation
- but can be extracted with detailed analysis
due to the theorem Y5> _o, J5(x) = 1 for all x

Z?:—oo] p(x) =1 and]—p(x) = (=17 ]p(x)
= for each band h: [ Pyynchdf = [ Proastingdf

Power spectrum with P o« | ;

Application for intense beams:
» The sidebands reflect the distribution P( f; ) of the synchrotron freq. due to their incoherent nature
see e.g. E. Shaposhnikova et al., HB’10, p. 363 (2010) & PAC’09, p. 3531 (2009), V. Balbecov et al., EPAC’04, p. 791 (2004)

» However, the spectrum is significantly deformed amplitude T,dependent synchrotron freq. f; ()
see e.g. O. Boine-Frankenheim, V. Kornilov., Phys. Rev. AB 12. 114201 (2009)

P. Forck, GSI: Introduction to Schottky Measurements 27 ARIES Workshop CERN, 15" of May 2018



Outline:

» Introduction to noise and fluctuations relevant for Schottky analysis

» Main part: Schottky signal generation and examples for the following case:
» Longitudinal for coasting beams

» Transverse for coasting beams
» Longitudinal for bunched beams
» Transverse for bunched beams

» Some further examples for exotic beam parameters
» Conclusion
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Transverse Schottky Analysis for bunched Beams ESN

Transverse Schottky signals are understood as

» amplitude modulation of the longitudinal signal

» convolution by transverse sideband

power P g

e

(h-q)f, hf, (h+q)f,

frequency

Schottky pickup

Example: GSI Ek,,, =11.4 MeV/u, harmonlcs h=119

Frequency Acquisition Length:
Span:
Input Att: 1

spectrogram ~ fastspan: 0.1 MHz
' ) ug{gg" T long.-bland

|_1!;.;-|:| 10 dB *%

z Span: 100 kHz

P. Forck, GSI: Introduction to Schottky Measurements

Span: 100 kHz]

29

Structure of spectrum:

» Longitudinal peak with synchrotron SB
- central peak Py « N2 called coherent
- sidebands P, « N called incoherent

» Transverse peaks comprises of
- replication of coherent long. structure

- incoherent base might be visible
Remark: Spectrum can be described by lengthy formula
see e.g. S. Chattopadhay, CERN 84-11 (1984)
Remark: Height of long. band depends
center of the beam in the pickup

ARIES Workshop CERN, 15™ of May 2018



Transverse Schottky Analysis for bunched Beams at LHC ESR

Example: LHC nominal filling with Pb%2* ",harm. h = 4-10°

Schottky spectrogram during — acceleration & collisional optics within = 50 min

LHC ramp and collision:

The interesting information is in the
incoherent part of the spectrum
(i.e. like for coasting beams)

01:11:00

Start of ramp

01:31:00
Geometric

» Longitudinal part O Eno of ramp e "
- Width: > momentum spread collson ture
» Transverse part ) — o 14 o p———
- Center: — tune 020100 Schottky sideband Schot:iyfiignal Schottky sidgband
- Width: — chromaticity ' ; R —— "
difference of lower & upper SB lower trans.SB[— o b, cie Wl ol enrs v b e ey Lo

£y
o
T

- Integral : — emittance long.part  UPper trans.SB

synchr. SBs

injection collision

w
o
T

Norm. Amplitude [dB]
N
o

=
o
T

4 2 0 2 4

FNAL realization and measurement: frequency offset f —4.81 GHz [kHz]
A.Jansson et al., EPAC’04, p. 2777 (2004) & CERN: M. Betz et al. IPAC’16, p. 226 (2016),
R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011) M. Betz et al., NIM A 874, p. 113 (2017)
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LHC 4.8 GHz Schottky: Tune and Chromaticity Measurement =S

Tune from position of sideband: o 2347

Permanent monitoring of tune L 0-337
. . . - . - — v

» Without excitation = 0-32 == - e
. 4 . c 0.31 oy .

» High accuracy down to 10 possible & . change to collisional optic.

» Time resolution here 30 s 8 0. BBQ tune [0.1 s]

. — . Avg. BBQ tune [30 s]
Comparison to BBQ system based on: 0.28 4 SCEDttky peak det. tune [30 s]
» Transverse (gentle) e_xutahon _00_90- .00“00- Qg-.@' .00‘90. ‘00‘90.

» Bunch center detection A > Nr N >

» Time resolution here 1 s time duration ~ 5 h -
Chromaticity from width of sidebands ¢ oo e

Of i_nCOherent pa rt: .” = Schottky-chroma-gauss

. . . €] = Schottky-chroma-threshold

» Two different offline algorithms z ,,,A .
» Satisfactory accuracy E o T2 =
» Time resolution here 30 s £ o | ‘ |
> Performed at MD time, breaks are due & % & & & &
to experimental realignments i >
Comparison to traditional method (red dots): time duration ~ 3 h
» Change of bunching frequency = dp = P quar — Po
> Tune measurement and fit AQ /Q, = &+ dp/p, M. Betz et al. IPAC'16, p. 226 (2016),

M. Betz et al., NIM A 874, p. 113 (2017)
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LHC 4.8 GHz Schottky: Technical Design of slotted Waveguide =S

Challenge for bunched beam Schottky:
Suppression of broadband sum signal to prevent for saturation of electronics
Design consideration:

Remember scaling: width Af oc h, power P cc 1/h
» Low sum signal i.e. outside of bunch spectrum

vacuum

top signal out

E-field in wave guide wave guide
47 x 22 mm?

vacuum

(LHC: acceleration by f,.. = 25 MHz) o 270 slots of 2 x 20 mm’ port 2
> Avoiding overlapping Schottky bands K i —————— 1
» Sufficient bandwidth to allow switching - /e beame

Technical choice: 60 x 60

» Narrow band pickup by two wave guide
for TE,, mode, cut-off at 3.2 GHz

» Coupling slots for beam’s TEM mode vacuum

= center f. =4.8 GHz < harm. h~ 4.105  buttomout

& BW =0.2 GHz

g

|
\
\
\
\

Photo of 1.8 GHz
Schottky pickup
at FNAL recycler

b.‘..“‘_ y N —J - = = o

CERN: M. Wendt et al. IBIC’16, p. 453 (2016), M. Betz, NIM A 874, p. 113 (2017)
FNAL: R. Pasquinelli et al., PAC'03, p. 3068 (2003) & R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011).
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Outline:

» Introduction to noise and fluctuations relevant for Schottky analysis

» Main part: Schottky signal generation and examples for the following case:
» Longitudinal for coasting beams
» Transverse for coasting beams
» Longitudinal for bunched beams

> Transverse for bunched beams

Y

Some further examples for exotic beam parameters

Y

Conclusion
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Deformed Schottky Spectra for high Intensity coasting Beams =S

Transverse spectra can be deformed even at ‘moderate’ intensities for lower energies

Remember: Transverse sidebands were introduced as coherent amplitude modulation

Goal: Modeling of a possible deformation leading to correct interpretation of spectra
Extracting parameters like tune spread AQ;,.,, by comparison to detailed simulations

Example: Coasting beam GSI synchrotron Ar!8* at 11.4 MeV/u, harm. h = 40, coherent AQ,,, = 0

lower transverse sideband upper transverse sideband

. N=1.1-10%, Ap/p,=7.8 - 10 »
estimated AQ;,.,,= 0.053 12

N=11-101 —>
N=3.9-10°

incoh

N=3.9-10° Ap/p,=6.7 - 10 10

estimated AQ;,,.,,= 0.019 z 8 N=45.10°
N=45-10% Ap/p,=2.5-10% o 6
estimated AQ;,,.,,= 0.001 4
2
dos e 2 . O v — N
10.62 10.63 10.64 10.73 10.74 10.75 10.76
Method: f/ MHz £/ MHz

» Calculation of space charge & impedance modification

» Calculation of beam’s frequency spectrum

» Comparison to the experimental results

= Model delivers reliable beam parameters, spectra can be explained

Schottky diagnostics:

» Spectra do not necessarily represents the distribution, but parameter can be extracted

O. Boine-Frankenheim et al., Phys. Rev. AB 12, 114201 (2009), S. Paret et al., Phys. Rev. AB 13, 022802 (2010)
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Longitudinal Schottky: Modification for very cold Beams =5

Very high phase space density leads to modification of the longitudinal Schottky spectrum

Low energy electron cooler ring: Example: at CSRe cooler ring in Lanzhou, China

High long. & trans. phase space density Beam: Ar'8* at E,.. = 21 MeV/u, harm. h ~ 100

—> Strong coupling between the ions g ~ - : 3

— Excitation of co-&counter propagation | Q Dol 1
plasma waves by wake-fields (beam impedance) 0

This collective density modulation is a coherent effect!
= Schottky spectrum comprises then
coherent part with power scaling P ac N?

Amplitude [dbpV]

+ the regular incoherent part with P «c N .S
< Schottky doesn’t represent distribution e.g. o =Ap/p, — % 7 &\@Q’
but Ap / p, can be gained from model fit e [MHZI\.%'SO
< lyoom = 330 A beam current eam = 60 LA
o _ — ] y . ol ]
21.7 MeViu “Ar'™ 21.7 MeViu “Ar'™ 21.7 MeViu "Ar'™ 21.7 MeViu "Ar'™
ol L,=310 A Il L, =200 pA | L1 =130 pA I L1 =60 uA
' ' — Mmeas.
A 1 t— it
- 0_ - B - - + _ _p.
vp= - |l |l [l ﬂ Po |
>| <€
o J T L R 3 » a 0 > » t )
Ap /po ~ 5.-10> Frequency [klz] Ap/pa ~3.10°
S. Chattopadhay, CERN 84-11 (1984) L.J. Mao et al. IPAC’10, p. 1946 (2010)
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BPMs for coasting Beam by Schottky Analysis — Proof of Principle =S

Position measurement with BPMs for a coasting beam ADC comb
Beam: E,;, = 800 MeV/u, f,=0.99 MHz, f,f= 4.92 MHz, 1,.,, = 10 mA 125MS/s filter
25 ‘ IBPM numbgr 9 . ‘ B PM ’\/
Steps of beam manipulation: bump <+ Bump=+10mml| |, E IZ
1. Bunched beam acceleration 207 I cavitvoff & | ° ?ump=0!:’\m | P A— Comb@hfo Af=1kHz
2. Closed bump in one sectiog iz ' |
— regular closed orbit £ ’,f'*"+"*"*"'"‘“"""
measurement with D [ ettt S SR )
with 80 us time steps = Om\ |
3. Cavity switch off g 3 | SRR EPRRRPRRPRETIIN 158 o X 11 U s)?t\r/v -
& frequency detuning ) PR X3 extractio
— beam de-bunches ~15¢ punched coasting _
gl NER Coasting beam spectrum
BPM data treatment: AT " ime / s T ' . without filter
1. Digital comp filter at ,. o |
. t=24ms 2 t=,192ms .

Schottky harmonics <«<— Schottky lines

T “vvvy vy

15 > 19
£

f(h) forh=1...8

width Af=1kHz &0 M W Wv\ﬁ

I level f V

Sig

Magnitude / uV/sqgrt(Hz)

2. Time binning average- -
with 8 ms steps T Mrnewn T ek RO w7 it 2|
< oneurn o < oneturn 0 |
— Position resolution Ax = 1 mm at At = 10 ms time steps for coasting beam L'JZL'_, L'U:quencyll‘/?HZ P
e.g. useful for slow extraction or cooling observation ADC ‘ghost lines’
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Longitudinal Schottky at a LINAC ??? — Result: Probably not possible ===

Is it possible to measure the momentum spread at a single pass accelerator
i.e. is there an incoherent contribution to the bunch spectrum?

icku
Experiment at GSI: broadband pickup & oscilloscope cource LINAG buncher p Ep)
(Schottky in synchrotron: Incoherent width Af, och)
Beam: U%¥* at 11.4 MeV/u, f,..= 36 MHz
Result: Is this the incoherent 2 04 ' ‘ ‘ ‘
Peak structure | frequency spread oc Ap / p, ? %‘f’ o
does not change No, but bunchs’ ampl. & phase variation! g 02
for different O T Tcondrent” / NS 4bm[ns]sb 80 100
‘harmonics’ h: :lg : — I peak : FFT average over 100 pulse of 0.1 ms duration
— no incoherent T ol hflz 1 = ° ' h=4  C.iity1.3 GHz
Schottky part! Fa B h=15 | = jz f— h=15 l
Supported by spectra 5 % 60
recorded with a = 80 500 1000 1500 2000
cavity @ 1.3 GHz ... frequency [MHZz]

4 -2 gsz[m@) 2 4 ®
frequency f, = =f-inf__ [IMiHZ]

of high h and sensitivity @ annular electrode

Interpretation:

Schottky signals require the periodic passage of the same particle

to ensure the correlation to build up.
P. Kowina et al., HB’12, p. 538 (2012)
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Summary =S
Schottky signals are based on modulations and fluctuations:

Modulation < coherent quantities:

» Measurement of f, Q, & f, from peak center— frequent usage by GSI operators

Fluctuation < incoherent quantities:

» Measurement of Ap/p, & & from peak width — frequent usage for Ap/p, by GSI operators

> signature of Af, & AQ from peak shape — for machine development only at GSI

General scaling: incoherent signal power P(h) «c g N / h and width Af(h) oc h

g: ion charge state, N: number of ions, h: harmonics

Signal spectrum: Partly complex, but computable for ‘regular’ cases

High intensity beams: Characteristic modifications, important for model verification

Detection: > Recordable with wide range of pickups, measurement possible in each harmonics
» Electronics for very weak signals must be matched to the application

For valuable discussion | like to thank:
» P. Kowina GSI, R. Singh GSI, M. Wendt CERN for very intense discussion
» M. Betz LBL (formally CERN), O. Boine-Frankenheim GSI, O. Chorniy GSI, P. Hiilsmann GSI,
A. Jansson ESS (formally FNAL), A.S. Miller KIT, M. Steck GSI, J. Steinmann KIT and many others

Thank you for your attention!
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Summary =S

Spare slides
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Longitudinal Schottky at a LINAC ??? = No Il SN

Beam: U%* at 11.4 MeV/u, f,..=f, =36 MHz, I,,,, =0.2 mA, average of 100 pulse with 0.1 ms duration

Final bbleching (File 34) - No final bunching (File 32)

S 04 ' 1 ‘ ' S 04 ' ' ' ' m

g 02 & 02

3 00 3 00

g 02 e 02

g 04 . S 04 =
20 * o 20 a0 60 80 100

time [ns]
0 T T T T 0 T T T T T
10 _ = s 10t - .
20 T = . 20 T Egig .

&
S

magnitude [dB]
IN
o
magnitude [dB]
A
o

80 =

1 1 | . B ikt 1 . Mt
-6 4 -2 0 2 4 6 80—6 -4 -2 0 2 4 6
frequency difference Af =f-f_ [MHZ] frequency difference Af, =f-f [MHZz]
3 10 : ; ; ; ; 3S.-10 : . . ; ;
< A A A El,'_: v Z <C
5 30 &
< <
2 40 . =)
g @
2 50 £ . = o
g’ AAA;;“A.LAA E’ ‘**-‘“‘A““Eﬁm
< ! ! ! : © | e i e L | |
g 6% 5 10 15 20 25 30 g 60, 5 10 15 20 25 30

harmonic number h harmonic number h
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Schottky Spectrum at Synchrotron Light Sources

Hadron synchrotron: most beams non-relativistic or y < 10 (exp. LHC) = no synch. light emission
<> stationary particle movement = turn-by-turn correlation

Electron synchrotrons relativistic y = 5000 = synchrotron light emission
< break-up of turn-by-turn correlation ?

Test of longitudinal Schottky at ANKA (Germany):
Goal: determination of momentum spread Ap / p,
Ring shaped electrode as broadband detector

Results:
» Narrow coherent central peak
» Synchrotron sidebands clearly observed
» Sideband wider as central peak

= incoherent cntribution
> Ratio of power P_,,,..; / Psg @s expected
= Attempt started, feasibility shown!
Further investigations are ongoing

K.G. Sonnad et al., PAC’09, p. 3880 (2009)
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O —7==coherentpeak
'c -20] frenter = 0.465 GHz
2 h=172
S a0l || ]
] | i
3 ol 1 synch.SBs H 1%t synch. SBs -
5 | | ]
g 80| M
o | W W \ n i
-100 iw,»\ N ,J WJJW*”W " ,r'm "y ”‘w«w.“rwwIw-A«,.ij[w
100 50 0 50 100
frequency [kHz]
Ol
| reaicpherent peak :
e 20| .
CED - fcenter =2.7 GHz
2 40| h=1010]
3 15t synch. SBs | 1%t synch. SBs -
2 60| :
£ -80 2"" synch. ‘ ;
© \’ “HM {IA hlf\* \M‘H | ]
100 |- Ak,
il "A"J M M.WM \ 1 Wi Wm i
10

Example' ANKA at 2.5 GeV

-100 -50 50
frequency [kHz]
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Electron Cooling: Linear Chain by Minimal Momentum Spread e =

Example: Observation of longitudinal momentum at GSI storage ring

» lon beam: U%%* at 360 MeV/u applied to electron cooling with I, = 250 mA

» Variation of stored ions by lifetime of 7210 min i.e. total store of several hours
» Longitudinal Schottky spectrum with 30 s integration every 10 min

— Momentum spread (1c): Ap/p = 10* — below 10® when reaching an intensity threshold

mean distance between ions [cm]
, 1000 100 10 1 0.1 0.01 0.001
10 | | 1 | T T | 100

S
| Ay

reflection -
2 probability

momentum spread ép/p
=
< 0 9]
+ &
] ]
g 2
Mqeqoad uorjiapgaa

%

number of ions in beam

Interpretation:
» Intra beam scattering as a heating mechanism is suppressed below the threshold
» lons can’t overtake each other, but building a ‘linear chain’ (transverse size ¢, < 30 um)
» Momentum spread is basically given by stability of power suppliers
M. Steck et al., Phys. Rev. Lett 77, 3803 (1996), R.W. Hasse, EPAC 00, p. 1241 (2000)
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Transverse rms Emittance Determination by Schottky Analysis at RHIC =5 I

The integrated power in a sideband delivers the rms emittance Phi X (d?) X &msB

Example: Schottky cavity operated at dipole mode TM,; @ 2.071 GHz & TM,,, @ 2.067 GHz
i.e. a beam with offset excites the mode (like in cavity BPMs)
Peculiarity: The entire cavity is movable = the stored power deIivers a calibration P(x)

/,,0& TM,,, mode cavity

power in long band
depend on beam p05|t|on X

n
S

— Proton BamSpecl.rum
— No Beam Background Res, p nse

&
=]

L
=]

" lower SB upper SB |

Signal (dBm)
do
=]

R T R S S SR BTl
20 30 40 50 60 70 80
Frequency (kHz)

Result: rms emittances coincide with IPM measurement within the 20 % error bars
TABLE II. Results of Schottky emittance scan and comparison to RHIC IPM. Emittance values are normalized.

Schottky Schottky Schottky IPM
B function rms beam size emittance emittance
Ring and plane (m) (mm) (7 pm, 95%) (7 pm, 95%)
Blue horizontal 28+ 4 1.04 £ 0.1 23£5 245
Blue vertical 27+ 4 0.95£0.1 20+ 4 233
Yellow horizontal 27 £ 4 0.99 0.1 22+ 4 194
Yellow vertical 305 1.15x 0.1 265 284

K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), W. Barry et al., EPAC’98, p. 1514 (1998)
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Longitudinal Schottky Noise Analysis for acceleration Ramp Operation =S

Example for longitudinal Schottky spectrum to check proper acceleration frequency:

> Injection energy given by LINAC settings, here E;, =11.4 MeV/u < = 15.5 %, Ap/p = 103 (10)

» multi-turn injection & de-bunching within * ms

» adiabatic bunch formation & acceleration frequen Cy Span

» Measurement of revolution frequency f,., 0 [kHZ] 250 500\
>

Alignment of acc. f,; to have frev =h -f,f f.o, INjection

i.e. no frequency jump ! g
Auency Jump coasting

Ao /Hz)

= 25.4MHz

center 7]

h=120 h

1 h=121

[ er: 25410156 MHz  Span: 500 kHz

Acquiring / trigger armed
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Example of longitudinal Schottky Analysis for a coasting Beam =S

Example: Coasting beam at GSI synchrotron at injection
E,=11.4 MeV/u < B=15.5%, harmonic number h =119

Frequency: 25 S MHz Acquisition Length: 250.24 ms
Span:
Input Att 4 Span l MHZ

Span: 1 MHz§

hlgh resolutlon O 1 MHz sipan 0.1s
Afh oc h'Ap
(—

L I AE TR
Span: 100 kHz

Application for coasting beam diagnostics:

— . A
» Injection: momentum spread via v 1.4 as influenced by re-buncher at LINAC

Po n hfo
> Injection: matching i.e. f.. ..., Stable at begin of ramp
» Dynamics during beam manipulation e.g. cooling

» Relative current measurement for low current below the dc-transformer threshold of ~ 1pA
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Example of Chromaticity Measurement at Tevatron =5

Permanent chromaticity monitoring at Tevatron: e T A B
» Sidebands around 1.7 GHz i.e. h ~ 36,000 - Measurement completed -
with slotted waveguide, see below for CERN type Proton Horizontal Proton Vertical
950
» Gated, down-mixing & filtered £ ..ZZ—% | 3_f AL/\‘_ g.mo = Af Af /\
by analog electronics g ows [ ]\ 18 5" j _’/ | ‘\_
. . . o -1050{ 4 & =¥alj | =
» Gaussian fit of sidebands ! Towers} o upper sa] = b |owﬂs§, ,J upper SB
12575 12800 12825 12850 1275 12000 12575 1200 12825 12850 18/5 120
Center — tune q Frequency kHz Frequency kiz
Width — chromaticity & via Af *- Af- o W2 e W
. Proton ------- Tune —---- Chromaticity ---- Momentum spread --- Emittance --
— momentum spread Ap/ p via Af *+ Af' Horizontal - 0.59 20.002 1.697 2,930.04
Vertical --- 0.5798 12.175 1.727 1,694.32
Betatron tune values during Store 3576 Fitted Chromaticity Values during Store 3576
0.591 - _ a0 -
os0]  © g:g:g: C:;?cr::" - Proton Hrizontal
0.589 - AntiProton, Hor. 25 - Proton Vertical
0.588 . AntiProton Vert. - AntiProton, Hor.
@ 08871 gty o T o
= 0585 . L -
g 0.584 ' ' "‘vunﬂlmmﬂﬂ E 15 4
g 0.533-_ i E
§ et 5 1
B 0580 )
0.579 4 ‘ 5
0.578 - g
0.577 '
T T 0 T T

—_— —
0 10000 20000 30000 40000 50000 0 1000 20000 30000 40000 50000
Time into the store, seconds 12 hours Time into the store, seconds ~1 2 hours

Remark: Spectrum measured with bunched beam and gated signal path, see below
A. Jansson et al., EPAC’04, p. 2777 (2004) & R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011)
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