Schottky Measurements at RHIC

Andrei Sukhanov, Control Group, Collider-Accelerator Department RHIC, BNL

BNL: M. Blaskiewitz, K. Brown, W. Dawson,
C.Degen, R.Lee, M. Kesselman, P. Cameron, J. Cupolo A. Della Penna, R. Schroeder.
LBNL 1998 (HF cavity): W. Barry , J. N. Corlett, D. A. Goldberg, D. Li

<u>Outline</u>

- Schottky installations at RHIC
 - For routine operations: <u>High Frequency Schottky</u> (2.0 GHz, Q ~5000). Low Frequency Schottky (245 MHz, Q ~100).
 - Schottky pickups for stochastic cooling.
- Signal treatment.
- Extraction of beam parameters.
- Absolute calibration of beam size measurement.
- Analysis:
 - Fit-less.
 - Handling of changing RF during ramp.
- Results

Schottky Cavities at RHIC

LF Schottky at RHIC

Provides measurable signals for broad range of beam conditions.

<u>Routine measurements:</u>

- Tune.
- Beam size/emittance.

Advantage:

- No downmixing.
- Narrow sidebands.
- Fast filling time.

Main usage at RHIC:

- When dp/p is large, I.e. low energy ion runs.
- Reference for other systems.

<u>Disadvantage</u>:

- Low signal/noise
- Long acquisition time

Stub-tuned 1/4 wave resonator

- Frequency ~240 MHz (8.5xRF)
- Q ~ 100
- Movable

LF Schottky Signal Treatment

Polarized proton beam 250 GeV

High Frequency Schottky

Provides high quality signals for routine measurements.

HF Schottky cavity [1]

Q = 4700

Needle probes for:

- Transverse modes TM210 and TM120 at ~ 2.0 GHz
- Longitudinal mode: TM111 2.7 GHz

HF Schottky installed on a moving platform at RHIC beamline.

Longitudinal spectrum after mixing

Beam Parameters from Schottky

The **chromaticity** ξ is determined from the width asymmetry of the betatron peaks [3] Here the η is a phase-slip factor of the accelerator.

 $\xi = \eta \left(\frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} h - q \right)$

The RMS of the **beam size** σ , determined from the power of the betatron peaks [3,4]. N is the number of particles, Q is particle charge.

 $P_{+} = P_{-} = \frac{1}{2} f_{0}^{2} Q^{2} N \sigma^{2}$

Transverse **emittance** ε:

Where $\boldsymbol{\beta}$ is value of beta function at cavity position

$$\epsilon = \frac{\sigma^2}{\beta}$$

For more details see [2,3]

Absolute Calibration of the Beam Size

Ratio of powers in revolution P_0 and betatron lines P_+, P_- as a function of cavity position X:

$$\frac{P_{0}}{P_{+}+P_{-}} = \frac{1}{\sigma^{2}} [X^{2}+D^{2}\delta^{2}]$$
$$\delta^{2} = \frac{\langle (E_{k}-E_{0})\rangle}{(\beta^{2}E_{0})^{2}}$$

Where D is lattice momentum dispersion $\beta = v/c$, E₀ - energy of the particle on the reference

trajectory

 $\mathbf{E}_{\mathbf{k}}$ is single particle energy

RMS of the beam size:

- Fit $P_0/(P_+ + P_-) = a^*x^2 + b$
- Beam RMS: $\sigma = sqrt(1/a)$

Beam Emittance = σ/β -function

Detector position (mm)

For more details see reference [3]

Transverse Schottky Signals at Top Energy

- Signal/Noise in ion runs is 50 higher than in proton runs.
- **Coherent spike**: No definitive explanation has yet been found. It needs to be removed from analysis.
- Peak shapes are not gaussian.
- Noise is not gaussian.

Required estimations:

Spectra During Injection and Ramp

Options to deal with the changing RF:

- 1. Use RF-locked LO1. RF harmonic = 71
- 2. Use RF instead of LO2.

- 3. Frequency modulated LO1.
- 4. Software-adjusted LO1.

- Analysis is done in linear scale, it is less sensitive to noise.
- Spike removal: replace spike with parabolic approximation of the adjacent Schottky signal.

- The peak widh:
 - Find the left and right edges of the peak using the crossing points of the filtered data at a half-amplitude level in log scale.
 - The peak width is the difference between the edges.
- The **peak position** is the arithmetic average of edge positions.
- The **peak power** is the sum of the peak points above the noise floor (pink line above the noise floor on next slide).

Calculate the beam parameters according to equations on slide 8.

Results

Chromaticity display during 250 GeV protons

Emittance Measurement

Emittance (blue vertical) measurement for Ru-Ru run, 200 GeV, N = 1e11.

The schottky measurements (black ponts) are consistent with IPM measurements (blue triangles). The scaling mismatch is due to uncertainty in beta function.

Spectrum of Longitudinal Schottky

Summary

• Schottky systems are continuously operational at RHIC:

(1) Narrow band: (HF Schottky, 2.0 GHz, Q=5000)

- (2) Medium band: (LF Schottky, 245 MHz, Q=100)
- Routine measurement of beam tune, chromaticity and emittance provided.
- Developed analysis of transverse Schottky works reliably at injection, ramp, and full energy.

Resolutions: Using on-board averaging for 128 frames (~2s)	Parameter	Injection	Ramp	Flat Top
	Tune	0.1%	0.4%	<0.1%
	Chromaticity	2%	N/A	10%
	Betatron power, Beam size, Emittance	Inconsistent with IPM		2%
	dp/p, revolution peak	N/A	N/A	2%
	dp/p, betatron peak	>20%	10%	2%

• Near term plan: try RF-locked downmixing to get quality of tune and chrom at ramp comparable with BBQ.

References

[1] W. Burry et al, Design of a Schottky Signal Detector for Use at RHIC, EPAC98 Stockholm.

[2] D. Boussard, Schottky Noise And Beam Transfer Function Diagnostics, 10.5170/CERN-1995-006.749, CERN, Geneva, 1995

[3] K. A. Brown, M. Blaskiewicz, C. Degen, A. Della Penna in Phys. Rev. Accelerators and Beams, 12, 012801 (2009)

[4] M. Blaskiewicz, J.M. Brennan, P. Cameron, W. Fischer. LONGITUDINAL IMPEDANCE MEASUREMENT IN RHIC, Proceedings of EPAC 2002, Paris, France

Backup slides

DP/P and PwrPb

HF Cavity Parameters

Mode	Parameter	Value
TM ₁₂₀	Frequency	2.071 GHz
	Qunloaded	10,000
	$R_{\perp}T^{2}/Q$	900 <u>Ω</u>
	$\overline{R}_{\perp}T^2$	$9 M\Omega/m$
TM ₂₁₀	Frequency	2.067 GHz
	Qunloaded	10,000
	$R_{\perp}T^2/Q$	900
	$R_1 T^2$	9 MΩ/m

