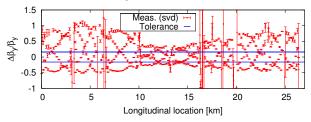
Instrumentation & optics measurements at LHC - what is used and what has been achieved

F. Carlier, J. Coello, A. Garcia-Tabares, M. Hofer, A. Langner, E. Maclean, L. Malina, T. Persson, P. Skowronski, R. Tomás and A. Wegscheider.

May 13, 2018

Turn-by-Turn BPM signal in the $i^{\rm th}$ BPM:

$$x_i(n) = C_i \sqrt{2\beta_i J} \cos(2\pi nQ + \phi_i) + \overline{x}_i + \sigma_{noise}$$

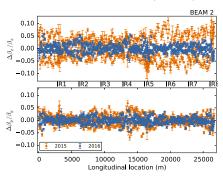

Uncertainties on Q and ϕ_i when using FTs on $x_i(n)$:

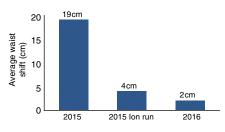
$$\sigma_{Q} = rac{\sigma_{noise}}{AN^{lpha}} \ \sigma_{\phi} = rac{\sigma_{noise}}{A\sqrt{N}}$$

where $A = C_i \sqrt{2\beta_i J}$ is affected by the BPM calibration error C_i .

First β -beating measurement and optics analysis for the CERN Large Hadron Collider

M. Aiba, S. Fartoukh, A. Franchi, M. Giovannozzi, V. Kain, M. Lamont, R. Tomás,* G. Vanbavinckhove, J. Wenninger, and F. Zimmermann

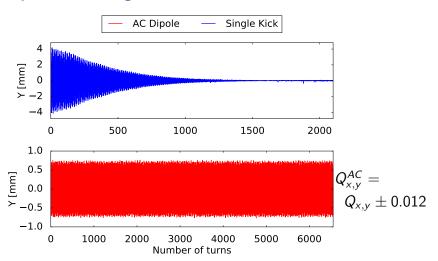



- \star LHC BPMs worked perfectly in the $1^{\rm st}$ injections into the LHC!
 - Design performance: $\sigma_{noise} = 100 \mu \text{m}$ at 10^{10}ppb in TbT mode
 - 2000 BPM channels working with less than 5% failure
- \star β -beating of 100%!
- ★ Main quadrupole error identified

ဏ္ဌာ

LHC optics commissioning: A journey towards 1% optics control

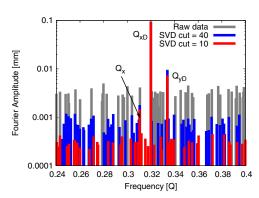
T. Persson,* F. Carlier, J. Coello de Portugal, A. Garcia-Tabares Valdivieso, A. Langner, E. H. Maclean, L. Malina, P. Skowronski, B. Salvant, and R. Tomás


- \star $\beta^* = 0.4$ m, design was 0.55 m
- \star rms eta-beating below 1.8%
- \star rms β^* -beating below 1%

Main ingredients:

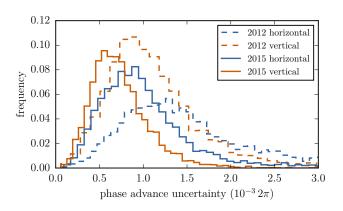
- ★ AC dipole for TbT
- \star β from phase (BPM calibration poor)
- \star K-modulation for β^* & IR4

AC dipole gives more turns for analysis and it is non-destructive. Limitations: Maximum 6600 turns & 1 min. wait for cool-down.

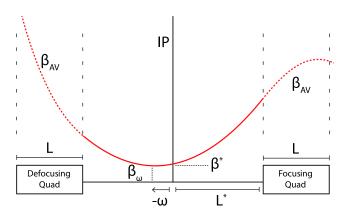


Singular Value Decomposition cleaning

Removing uncorrelated noise from the 1000 BPMs/beam with SVD improves Q and phase measurement uncertainties:

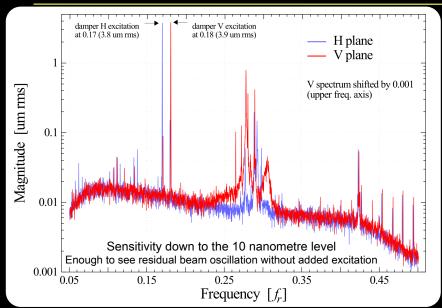

$$BPM_{matrix} = \sum_{i} u_{i} \sigma_{i} v_{i}^{T}$$

Clean: Keep $i \leq \text{cut}$

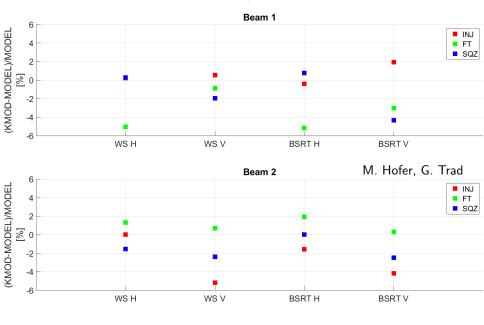

Phase measurement uncertainty

Phase uncertainty of about 2π mrad tipically achieved.

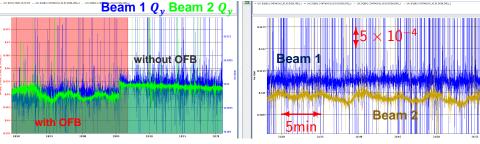
K-modulation



$$eta_{AV} pprox \pm 4\pi rac{\Delta Q}{\Delta K_{quad}}$$
, eta^* and waist ω are interpolated.

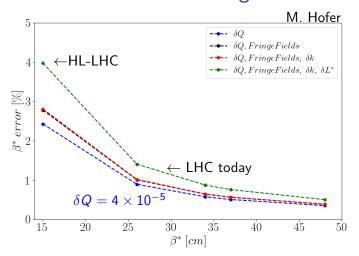

Having accurate tune measurements is fundamental.

LHC Tune System Performance


K-modulation to measure β 0 instruments

Issues with β^* from K-modulation this year

- β^* measurements less reproducible than before. Possible reasons:
 - ★ Change in amplitude detuning (non-linearities)
 - ★ Poorer tune stability. Related to Orbit Feedback?



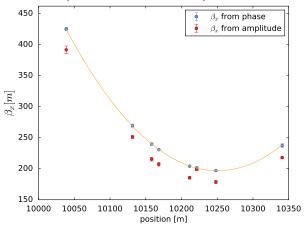
Further investigations needed in 2018.

 \rightarrow Search for alternative β^* measurement techniques is required.

eta^* from K-modulation: challenge in HL-LHC

In HL-LHC, expected β^* error is 4% with only machine uncertainties, while goal is 2%. If $\delta Q > 4 \times 10^{-5}$ disaster.

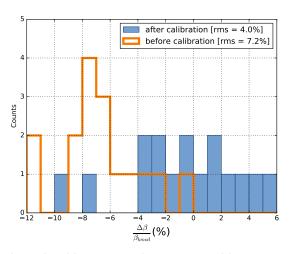
ightarrowSearch for alternative eta^* measurement techniques is required.



- ★ Using Q1 BPMs betatron amplitude measurement
- ★ Requirement is about 1% accuracy in calibration, i.e. $|C_i 1| < 0.01$

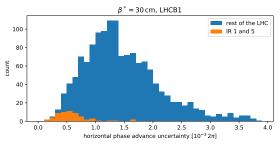
BPM Calibration with ballistic optics

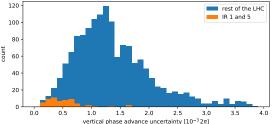
Switching off IR quadrupoles $\beta(s) = \beta^* + s^2/\beta^*$ and a very precise β -measurement is possible to even compute C_i :



A. García-Tabarés Valdivieso et al., IPAC 2016

BPM Calibration with ballistic optics

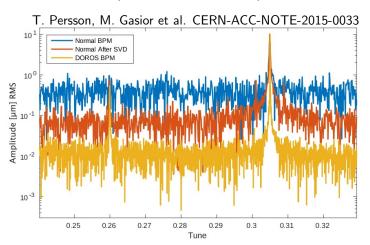

BPM calibration errors are well above requests



This optics-based calibration reduces rms calibration errors by about a factor 2 but does not reach 1%. Changes over time observed.

Phase advance for β^* ?

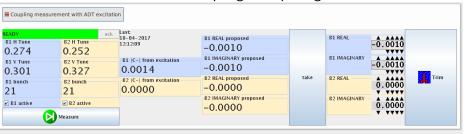
A. Wegscheider


IR BPMs have better phase uncertainty, $\sigma_{\phi} \approx 5 \times 10^{-4}$, thanks to the larger β .

In order to use phase for β^* calculations we need $\sigma_{\phi} \leq 10^{-4}$, a factor 5 improvement in σ_{noise} .

We have not checked DOROS BPMs for this.

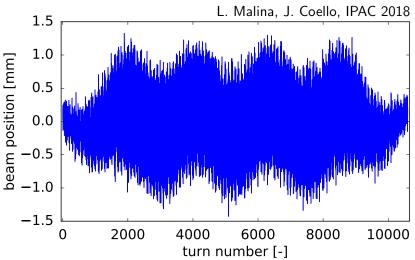
DOROS BPMs (see Jakub Olexa's talk)



Noise level after SVD improves by about a factor 5! Need to check DOROS for measuring β^* from phase.

Automatic coupling correction tool

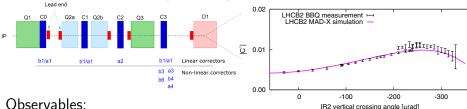
The ADT is used as an AC dipole to excite the beam. All normal BPMs are used to measure coupling, computing a correction:



T. Persson et al., IPAC 2018

3D kicks

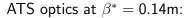
Combined AC dipole + fast RF modulation speeds up off-momentum optics measurements:

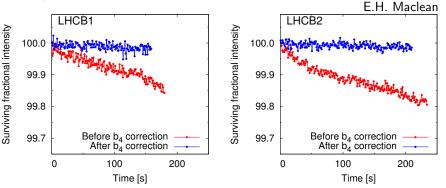


First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider

E.H. Maclean

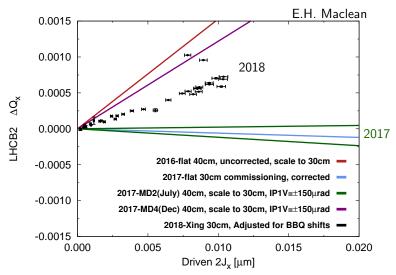
CERN, CH-1211 Geneva, Switzerland; Cocroft Institute, Daresbury WA4 4AD, United Kingdom; University of Manchester, Manchester M13 9PL, United Kingdom


R. Tomás, M. Giovannozzi, and T. H. B. Persson



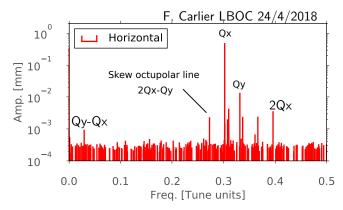
- ★ Tune & coupling shifts versus orbit bumps
- \star Amplitude detuning Q = Q(J)
- Resonance Driving Terms
- Lifetime

IR octupolar corrections & lifetime

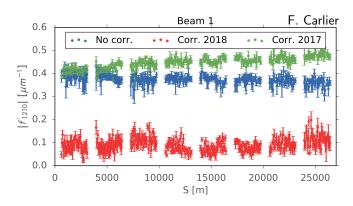


Non-linear corrections are critical for integrated luminosity, specially for HL-LHC.

Issue with non-linear corrections in 2018


Larger amplitude detuning than in the past measured in 2018. Need further investigations and new corrections.

Resonance Driving Terms

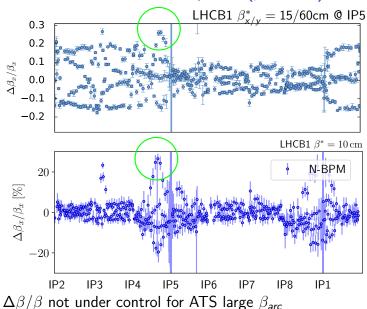


For the first time in 2018 we implement IR skew octupolar corrections from Resonance Driving Terms measurements.

Skew octupolar resonance driving term

Successful correction in Beam 1 (Beam 2 limited by missing corrector). Many sextupolar, octupolar and decapolar resonance terms to explore!

Outlook



- \star β^* control is highly challenged:
 - K-mod distorted by orbit feedback? Maybe needs more stable BPM orbit readings and better tune measurements?
 - β^* from amplitude distorted by Q1 BPM calibration error. Can we reach 1% BPM calibration accuracy?
 - β^* from phase needs a factor 5 lower $\sigma_{noise} \to \mathsf{Explore}$ DOROS
- ★ Control of non-linearities is critical, specially for HL-LHC:
 - Many resonances to study
 - Relying on BPMs with very low aberrations
 - What changed amplitude detuning in 2018?
- ★ Looking forward other techniques presented in the workshop: Schottky, BTF & beam size from BPMs.

Back-up slides

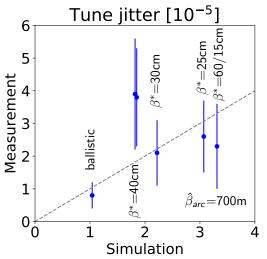
Flat and round ATS optics ($\beta_{arc} \times 4$)

BPM non-linear aberrations

Let $\hat{x}(N)$ be the real beam position versus turn:

$$\hat{x}(n) = \sqrt{2\beta_x J_x} \cos(2\pi n Q_x + \phi_x)$$

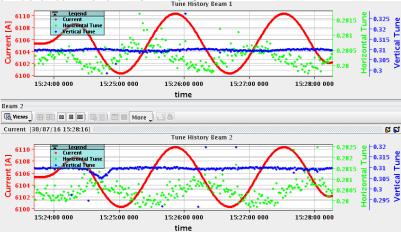
$$\hat{y}(n) = \sqrt{2\beta_y J_y} \cos(2\pi n Q_y + \phi_y)$$


then the BPM reading with aberrations is

$$x(n) = \overline{x} + \sigma_{noise} + C\hat{x}(n) + c\hat{y}(n) + B\hat{x}(n)^{2} + D\hat{x}(n)\hat{y}(n) + \dots$$

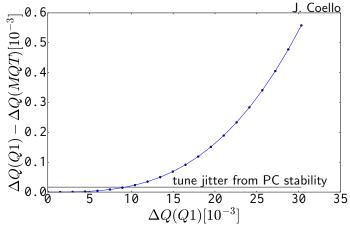
Measured tune jitter in MDs

Measurements versus predictions from power converter stability (sampling at 1 minute):



General agreement, need better accuracy \rightarrow MDs in 2018.

K-modulation with tune feedback I



Late response of feedback, partial correction...

K-modulation with tune feedback II

Systematic error from Q1 β -beating in MQTs:

Systematic error above random error for $\Delta Q > 0.01$.