

Discussion on noise match and power match issues of resonant Schottky pickup

Junixa Wu, Guangyu Zhu, Yong Zhang

Beam Diagnostics group

Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS)

Contents

- Schottky pickups at IMP
- Noise match measurement of the Resonant Schottky pickup
 - (Many thanks to Fritz Caspers for many useful hints and help on this)

HIRFL-CSR and Schottky pickups

HIRFL-CSR: Heavy-Ion Research Facility with Cooing Storage Ring on Lanzhou,

Superconducting Proton LINAC

Beam diagnostics in LINAC

Beam diagnostics Interface

Future facility

CiADS Beam Diagnostics: proton\ 10 mA @ 250 MeV

Туре	LEBT	MEBT	HWR 010	HWR 019	Spoke 042	Ellipse 062	Ellipse 082	HEBT
ACCT	1	2	1	1	1	1		2
DCCT	1	1	-	-	-	-		1
BPM	-	7	12	12	9	22	6	15
Emittance	-	2			1	1	1	2
High Power FC	2	1	-	1	1	1	1	2
Bunch Shape Monitor		1			-	-	-	1
Wire Scanner	-	1	1	1	1	1	1	1
Beam Loss Monitor		1						1

• HIAF-iLINAC Beam Diagnostics: heavy ion\ 2 emA @ 17 MeV/u

	MEBT	QWR 047	1.6 MeV	HWR 010	5.3 MeV	HWR 015	17 MeV
ACCT	2						1
BPM	5	15		15		12	
Scrapper	3						1
ES	1		1		1		1
FC	1						1
BSM	1		1		1		1
BLM			1		1		1

Proton Therapy Facility-LINAC Beam Diagnostics : proton 2 mA @ 7 MeV

Schottky pickups at IMP

Capacitive pickup

Resonant cavity Collaborated with GSI

M. Bregman,, et al., Phys. Lett. 78B (1978) 174 ICE ring, antipron, 128 MHz

Longitudinal Schottky Signals

Schottky noise and beam transfer function diagnostics. D. Boussard

- •For coasting beam, total current per band is proportional to VN due to its incoherent distribution, power spectrum density P(f) in Δf , P(f)=Z_t($I_n^2/\Delta f$)
- •For bunched beam, there is a modulation in time of the particles' passage through PU, spectrum splits into several lines due to synchrotron oscillation

Longitudinal Schottky Signals

Schottky signals observation in our ring

Longitudinal Schottky Signals

> For small N with random phase, insufficient S/N.

Nuclear mass and lifetime measurement, even one particle detection

Resonant Schottky pickup

Output power of the resonant Schottky cavity PU

Shottky noise and beam transfer function diagnostics. D. Boussard

Resonant Schottky pickup

For mass measurement of unstable exotic nuclei or their isomeric states, the observation time is needed to get a certain required line separation.

• Transient spectrum of an excitation current after K passages of a single particle

$$I_{K}(t) = Ze \sum_{k=0}^{K-1} \delta(t - kT)$$

• Fourier transform of this current is peaked at the revolution harmonics $\Omega = m\omega$ with sidelobes.

$$\widetilde{\mathcal{X}}_{K}(\Omega) = Ze \frac{\sin(K\Omega T/2)}{\sin(\Omega T/2)} e^{i(K-1)\Omega T/2}$$

• Different nuclear species separated by $\delta\omega$

$$\frac{\delta\omega}{\omega} = \eta \, \frac{\delta(\beta\gamma)}{\beta\gamma} - \alpha_p \, \frac{\delta(m/q)}{m/q}$$

• To separate the different nuclear species at m^{th} harmonic, $\delta\Omega < m\delta\omega$

 $\frac{2}{mK} < \frac{\delta\omega}{\omega}, m \uparrow, K \downarrow$ high observation harmonics *m* lead to short measurement times ■ F.Nolden, NIM A 659(2011) 69-77

S/N between two pickups at GSI

• The same decay: improvement by a factor of about 100

Old Schottky Pickup (1992) ^{30th} ¹⁴² Pm⁵⁹⁺ ¹⁴² Nd⁵⁹⁺ ¹⁴² Pm⁵⁹⁺ ¹⁴² Nd⁵⁹⁺

New resonator Cavity (2010) ^{124th}

Resonant Schottky pickup

Resonant Schottky pickup for one particle detection

Date: 17.DEC.2012 15:00:38

Resonant Schottky pickup-one particle detection

Resonant Schottky pickup-one particle detection

Resonant Schottky pickup performance at IMP

- Schottky pickups at IMP
- Noise match measurement of the Resonant Schottky pickup

Date: 12.APR.2017 17:05:57

Noise Spectrum - 0.3 m long cable

Noise Spectrum - 0.5 m long cable

Tek RSA5100A - [Spectrum]	x
👖 File View Run Replay Markers Setup Presets Tools Window Help 🗕	đΧ
2 💾 🤊 (*) 🖶 😰 🕸 T 😤 🕸 15. Frequency: 243.52 MHz RefLev: -22.00 dBm Preset I Replay - I Stop	-
Trace 2 Show Sample Avg 20	Clear
y dB/div: -86.0 - 1.00 dB MR: -89.04 dBm M1: -94.69 dBm M1: -94.69 dBm 243 526706 MHz 246 522850 MHz	
RBW: ΔM1:-6.65 dB 10.0 kHz 4.996154 MHz	
^{10 Hz} Blue trace: 0.3 m	
-90.0 - Green trace: 0.5 m	
Yellow trace: N adapter	
-92.0 -	
	N N
-96.0 -	
Autoscale © CF: 243.52 MHz © Span: 10.00	MHz
Spectrum Freq & Span BW Traces Scale Prefs Settings	
RBW: 10.0 kHz Auto Span/RBW ratio: 100	
Filter Shape: Uniform (none) VBW: 10 Hz	
Restore Defaults	
Markers Define VMR Frequency 243.522859 MHz To Center Peak + Table	X
nalyzing Acq BW: 10.00 MHz, Acq Length: 29.720 ms Real Time Free Run Ref: Int Atten: 0 dB Preamp	

S21 measurement of the Resonant Schottky pickup

S11 of the preamplifier

Impedance match circuit to the preamplifier

S11 of the preamplifier - after impedance match

S21 measurement of the Resonant Schottky pickup

With impedance match, the resonant frequency and Q value are independent to the cable length

S/N measurement for Resonant Schottky pickup

Gain measurement with a noise figure meter

Without impedance match to the preamplifier

With impedance match to the preamplifier

noise figure/dB

NF measurement with a noise figure meter

Without impedance match to the preamplifier

With impedance match to the preamplifier

- The length of the transmission line between cavity and preamp has a significant impact on the loaded Q value of the cavity due to rather strong mismatch of the input of the LNA.
- To have a defined Q value and optimum power transfer, we did the impedance matching.
- With impedance match circuit, the loaded Q are independent of the cable lengths.
- > But different cable lengths yield different S/N ratios.
- To have a compromise between the noise match and power match, we need to do further work.

Great thanks to: ≻Rhodri Jones, Peter Fork, Madeleine Catin, ≻ARIES

Thanks for your attention. Welcome to your comments

Noise measurement for Resonant Schottky pickup

50 Hz noise observation from the Schottky pickup with different cable length

Noise Spectrum – 0.5 m long cable

Noise Spectrum – 0.3 m long cable