See-saw mediators in t-channel

Margherita Ghezzi

BSM direct searches at CLIC, 21 February 2018

- Introduction: the doubly charged scalar
- 2 Low energy: EFT and current limits
- 3 High energy: LHC searches
- 4 High energy: future colliders
- Summary

- 1 Introduction: the doubly charged scalar
- 2 Low energy: EFT and current limits
- 3 High energy: LHC searches
- 4 High energy: future colliders
- Summary

The doubly charged scalar from the $SU(2)_L$ -triplet scalar

Type-II see-saw model

$$S = \begin{pmatrix} S^+ & \sqrt{2}S^{++} \\ \sqrt{2}S^0 & -S^+ \end{pmatrix}$$
$$< S>_0 = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}$$

Yukawa term with the triplet:

$$\Delta \mathcal{L}_{Y} = f_{ij} L_{i}^{T} C^{-1} i \tau_{2} S L_{j} + \text{h.c.}$$

Majorana mass term for neutrinos:

$$m_{ij}\bar{\nu}_{iL}^{c}\nu_{jL}$$
 $m_{ij}=w f_{ij}=m_{ji}$

T. P. Cheng and L. F. Li, Phys. Rev. D 22 (1980) 2860
 W. Grimus, R. Pfeiffer and T. Schwetz, Eur. Phys. J. C 13 (2000) 125
 E. Ma, M. Raidal and U. Sarkar, Nucl. Phys. B 615 (2001) 313
 A. G. Akerovd and M. Aoki, Phys. Rev. D 72 (2005) 035011

The doubly Charged $SU(2)_L$ -singlet scalar

Zee-Babu model

SM + 2 $SU(2)_L$ -singlet scalars:

- ullet a singly charged scalar which couples to left-handed leptons: h^\pm
- ullet a doubly charged scalar which couples to right-handed leptons: $k^{\pm\pm}$

It generates mass terms for the neutrinos at two loops:

A. Zee, Nucl. Phys. B **264** (1986) 99
K. S. Babu. Phys. Lett. B **203**, 132 (1988)

M. Nebot, J. F. Oliver, D. Palao and A. Santamaria, Phys. Rev. D 77 (2008) 093013

The doubly Charged $SU(2)_L$ -singlet scalar

Minimal model for neutrino masses

SM + 1 $SU(2)_L$ -singlet doubly charged scalar: $S_R^{\pm\pm}$

It couples only with right-handed charged leptons:

$$\mathcal{L}_{UV} = \mathcal{L}_{SM} + (D_{\mu}S^{++})^{\dagger} (D^{\mu}S^{++}) + (\lambda_{ab} \overline{(\ell_R)_a^c} \ell_{Rb} S^{++} + \text{h.c.})$$

 λ_{ab} consist of 6 independent parameters and allow for LFV processes

S. F. King, A. Merle and L. Panizzi, JHEP 1411 (2014) 124

The doubly charged $SU(2)_L$ -singlet scalar

Neutrino mass terms are generated at three loop:

S. F. King, A. Merle and L. Panizzi, JHEP 1411 (2014) 124

- 1 Introduction: the doubly charged scalar
- 2 Low energy: EFT and current limits
- 3 High energy: LHC searches
- 4 High energy: future colliders
- Summary

Low-energy effective Lagrangian and the matching

Feynman diagrams representing the UV-complete contributions that match to the dipole and four-fermion operators.

- Diagrams in Fig. (b) match into the diagram in Fig. (a) (dipole interaction)
- Diagram in Fig. (d) matches into the diagram in Fig. (c) (contact interaction)

Low-energy effective Lagrangian and the matching

Dipole					
$Q_{e\gamma}$	$em_r(ar{l}_p\sigma^{\mu u}P_Ll_r)F_{\mu u}+\mathrm{H.c.}$				
Scalar/Tensorial		Vectorial			
Q_S	$(\bar{l}_p P_L l_r)(\bar{l}_s P_L l_t) + \text{H.c.}$	Q_{VLL}	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{l}_s \gamma_\mu P_L l_t)$		
		Q_{VLR}	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{l}_s \gamma_\mu P_R l_t)$		
		Q_{VRR}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{l}_s \gamma_\mu P_R l_t)$		
$Q_{Slq(1)}$	$(\bar{l}_p P_L l_r)(\bar{q}_s P_L q_t) + \mathrm{H.c.}$	Q _{VlqLL}	$(ar{\it l}_{\it p}\gamma^{\mu}{\it P}_{\it L}{\it l}_{\it r})(ar{\it q}_{\it s}\gamma_{\mu}{\it P}_{\it L}{\it q}_{\it t})$		
$Q_{Slq(2)}$	$(\bar{l}_p P_L l_r)(\bar{q}_s P_R q_t) + \text{H.c.}$	Q_{VlqLR}	$(\bar{l}_p \gamma^\mu P_L l_r)(\bar{q}_s \gamma_\mu P_R q_t)$		
Q_{Tlq}	$(\bar{l}_p \sigma^{\mu\nu} P_L l_r)(\bar{q}_s \sigma_{\mu\nu} P_L q_t) + \text{H.c.}$	Q_{VlqRL}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_L q_t)$		
		Q_{VlqRR}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{q}_s \gamma_\mu P_R q_t)$		

Dimension-six operators that allow for effective leptonic transitions below the EW scale

Current low-energy experimental limits

$$\mathrm{BR}(I_p^\pm o I_r^\pm \gamma) \simeq \left. rac{lpha \, m_p^5}{(24\pi^2)^2 m_\phi^4 \Gamma_p} \left| \sum_{w=1}^3 \lambda_{pw} \lambda_{rw}^* \right|^2$$

$${\rm BR}(I_{\rho}^{\pm} \to I_{r}^{\pm} I_{s}^{\mp} I_{t}^{\pm}) \simeq \frac{m_{\rho}^{5} |\lambda_{\rho s}|^{2} |\lambda_{r t}|^{2}}{s_{r t} 6(4\pi)^{3} m_{\phi}^{4} \Gamma_{F}}$$

- 1 Introduction: the doubly charged scalar
- 2 Low energy: EFT and current limits
- 3 High energy: LHC searches
- 4 High energy: future colliders
- Summary

Direct searches at LHC

- Signature: same-sign lepton pairs
- Assumptions on the branching ratios
- Narrow width approximation

ATLAS 7 TeV:

• Eur.Phys.J. C72 (2012) 2244

CMS 7 TeV:

Eur.Phys.J. C72 (2012) 2189

ATLAS 13 TeV:

CERN-EP-2017-198

CMS 13 TeV:

CMS-PAS-HIG-16-036

Current limits from LHC

CMS searches

Search for a scalar triplet $S=\left(\begin{array}{cc} S^+ & \sqrt{2}S^{++} \\ \sqrt{2}S^0 & -S^+ \end{array}\right)$ with degenerate masses.

12.9 fb⁻¹ of integrated luminosity at 13 TeV

Channels:

- Pair production with decays $S^{++}S^{--} \to \ell^+\ell^+\ell^-\ell^-$
- Associated production with decays $S^{\pm\pm}S^{\mp} \to \ell^{\pm}\ell^{\pm}\ell^{\mp}\nu$

CMS-PAS-HIG-16-036

Current limits from LHC

CMS searches

- $S_I^{\pm\pm}$ decaying at 100% to ee, $\mu\mu$, $\tau\tau$, $e\mu$, $e\tau$, $\mu\tau$;
- Benchmark points:

Benchmark Point	ee	еµ	еτ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

Lower bounds on the mass of the $S_L^{\pm\pm}$ - observed (expected) 95% CL:

Benchmark	AP [GeV]	PP [GeV]	Combined [GeV]
$100\% \Phi^{\pm\pm} \rightarrow ee$	734 (720)	652 (639)	800 (785)
$100\% \Phi^{\pm\pm} \rightarrow e\mu$	750 (729)	665 (660)	820 (810)
$100\% \Phi^{\pm\pm} \rightarrow \mu\mu$	746 (774)	712 (712)	816 (843)
$100\% \Phi^{\pm\pm} \rightarrow e\tau$	568 (582)	481 (543)	714 (658)
$100\% \ \Phi^{\pm\pm} ightarrow \mu au$	518 (613)	537 (591)	643 (708)
$100\% \ \Phi^{\pm\pm} ightarrow au au$	479 (483)	396 (419)	535 (544)
Benchmark 1	613 (649)	519 (548)	723 (715)
Benchmark 2	670 (671)	465 (554)	716 (723)
Benchmark 3	706 (682)	531 (562)	761 (732)
Benchmark 4	639 (639)	496 (539)	722 (704)

 $\mathcal{S}_{R}^{\pm\pm}$ may have similar kinematic properties, but potentially very different production cross sections. No associate production.

CMS-PAS-HIG-16-036

21/02/2018

Current limits from LHC

ATLAS searches

 $36.1\,\mathrm{fb^{-1}}$ of integrated luminosity at 13 TeV.

Scenarios:

- $\sum_{i,j=e,\mu} \mathcal{B}(S^{\pm\pm} \to \ell_i \ell_j) = 100\%$
 - $m(S_I^{\pm\pm})$ between 770 GeV and 870 GeV @ 95% C.L.
 - $m(S_R^{\pm\pm})$ between 660 GeV and 760 GeV @ 95% C.L.
- ullet $\mathcal{B}(S^{\pm\pm}
 ightarrow \ell_i \ell_j) > 10\%$ (decays to au and W are possible)
 - $m(S_I^{\pm\pm})$ larger than 450 GeV @ 95% C.L.
 - $m(S_R^{\pm\pm})$ larger than 320 GeV @ 95% C.L.

CERN-EP-2017-198

Expected discovery power of HiLumi-LHC

Expected lower limits on the mass - projections at $3000~{\rm fb}^{-1}$

CMS 12.9 fb $^{-1}$ $S_{l}^{\pm\pm}$ [600, 800] GeV \rightarrow [2400, 3200] GeV: $S_{l}^{\pm\pm}$, PP only [400, 700] GeV \rightarrow [1600, 2800] GeV ATLAS 36.1 fb $^{-1}$ $S_{l}^{\pm\pm}$, $\mathcal{B}_{\ell\ell} = 100\%$ \sim 800 GeV \rightarrow \sim 2400 GeV $S_{l}^{\pm\pm}$, $\mathcal{B}_{\ell\ell} > 10\%$ \sim 450 GeV \rightarrow \sim 1350 GeV \sim 700 GeV \sim 25 $_{l}^{\pm\pm}$, $\mathcal{B}_{\ell\ell} = 100\%$ \sim 300 GeV \sim 900 GeV

Width effects

- No production × decay approximation;
- some topologies that are negligible in the NWA can become relevant;
- assumption: gauge sector not modified, i.e. S_R^{±±} coupling to Z is not a free coupling;
- \bullet Γ_S is considered as a free parameter and $\sum_{ab,cd}\Gamma_S^{\rm part} \leq \Gamma_S$

$$\sigma_{PP o I_a^+ I_b^+ I_c^- I_d^-}(M_S, \Gamma_S, \lambda_{ab}, \lambda_{cd}) = \lambda_{ab}^2 \lambda_{cd}^2 \hat{\sigma}(M_S, \Gamma_S)$$

Width effects: results

Very good approximation for light leptons:

$$\sigma_{PP \to l_a^+ l_b^+ l_c^- l_d^-}(M_S, \Gamma_S, \lambda_{ij}) = \kappa_{ab,cd} \ \lambda_{ab}^2 \lambda_{cd}^2 \hat{\sigma}_{PP \to 2e^+ 2e^-}(M_S, \Gamma_S) \ ,$$

Width effects: results

- Cross-section corresponding to the maximum coupling values;
- relative ratio between cross-sections in the FW regime and NWA.

- 1 Introduction: the doubly charged scalar
- 2 Low energy: EFT and current limits
- 3 High energy: LHC searches
- 4 High energy: future colliders
- Summary

Perspective of searches at future colliders

Crivellin, MG, Panizzi, Pruna, Signer, work in progress

(Preliminary plot)

•
$$S = \frac{N_s}{\sqrt{N_s + N_b}}$$

- Beamstrahlung
- Standard acceptance cuts:

$$E(\mu^{\pm}) > 10 \, \mathrm{GeV}$$

 $|\cos(heta)| < 0.95$

Perspective of searches at future colliders

Crivellin, MG, Panizzi, Pruna, Signer, work in progress

(Preliminary plot)

Electron beam polarization:

$$P_{e^{-}} = 0.4$$

$$P_{e^{+}} = 0$$

Angular cut:

$$|\cos(\theta)| < 0.5$$

• Integrated luminosity:

Limits from low energy and discovery power of CLIC

(Preliminary plot)

Limits from low energy and discovery power of CLIC

Direct production

Single production at ILC

(Preliminary plot)

- 1 Introduction: the doubly charged scalar
- 2 Low energy: EFT and current limits
- 3 High energy: LHC searches
- 4 High energy: future colliders
- Summary

Summary

- Doubly charged scalars arise in many BSM models, in triplets or singlets under $SU(2)_L$, often in connection with the neutrino masses;
- LFV low energy processes set strong limits on combination of the DCS couplings to leptons;
- future e^+e^- colliders can provide complementary bounds;
- due to the production of the DCS in the t-channel, future e⁺e⁻ colliders can be sensitive to mass scales of several TeV;
- direct searches have been performed at LHC by both ATLAS and CMS, setting limits on the DCS mass in the range (320, 870) GeV depending on the assumptions;
- a moderately large width ($\Gamma_S/m_S \sim$ few%) can have 10-20% effect on the cross section compared to the NWA;
- further investigations of the DCS phenomenology are ongoing and the results will be published soon.