Detector optimization and reconstruction

Emilia Leogrande (CERN), on behalf of the CLICdp Collaboration

BSM direct searches Meeting
21/02/2018

Introduction

CDR studies [arXiv:1202.5940] were based on two detector concepts derived from ILC

* CLIC_ILD (featuring a TPC)
* CLIC_SiD (all-Silicon tracking system)

Further optimization studies led to a new single model, suited for high-energy collisions: CLICdet

SECTION I: DETECTOR DESIGN

CLICdet design is optimized for the 3 TeV environment
4. Crossing angle $=20 \mathrm{mrad}$

* Magnetic field $=4 \mathrm{~T}$

The CLICdet model features the following components

* Silicon pixel vertex detector
* Silicon tracker
* Silicon-tungsten ECal
* Scintillator-steel HCal
* Superconducting solenoid interleaved with RPC muon chambers
* Forward LumiCal and BeamCal

Detector layout and main parameters

Vertex detector

* Silicon pixels $25 \times 25 \mu \mathrm{~m}^{2}$
* single point resolution $=3 \mu \mathrm{~m}$
* 3 barrel double layers
* 3 sets of double spirals

26 cm

* material budget: 0.2% X0 per layer

Tracker detector

* Silicon pixels and microstrips
- inner tracker
+ 3 barrel layers, 7 disks
* outer tracker
+ 3 barrel layers, 4 disks
* single point resolution:
+ 1st inner disk: $5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$
+ all others: $7 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$
* material budget:
+ detector: ~1\%Xo per layer
+ support\&cables: $\sim 2.5 \% X_{0}$

The ECal and HCal

Particle flow calorimetry requires high-granularity calorimeters

ECal

* Si-W sampling calorimeter
* cell size $5 \times 5 \mathrm{~mm}^{2}$
* 40 layers (1.9 mm thick W plates)
* 22X0

HCal

* Scintillator-steel sampling calorimeter
* cell size $30 \times 30 \mathrm{~mm}^{2}$
* 60 layers (19 mm thick steel plates)
* $7.5 \lambda_{\text {I }}$

Total thickness \qquad

The magnet and muon system

The magnet system

* superconducting coil
$+4 T$ field
* return yoke
+ barrel: 1.5T field
+ endcap: no field

The muon system

* RPC chambers
+6 layers
+ additional possible 7th layer as close as possible to the coil, as tailcatcher for hadron showers
- cell size $30 \times 30 \mathrm{~mm}^{2}$

FCal: LumiCal and BeamCal

Tracks

* Conformal mapping for pattern recognition

Calorimeter clusters

* Pandora Particle Flow Algorithm (PFA)

Flavour tagging

* Vertex finding + Jet Clustering Algorithm

Track reconstruction: conformal mapping

* Conformal mapping applies a geometry transform that maps circles in the x.y plane passing through the origin into straight lines in the u, v plane

$$
u=\frac{x}{x^{2}+y^{2}} \quad v=\frac{y}{x^{2}+y^{2}}
$$

* Cellular automaton used to perform straight line search

Calorimeter clusters reconstruction: Pandora PFA

Typical jet composition: 62% charged hadrons, 27% photons, 10% long-lived neutral hadrons, 1% neutrinos

* The Pandora PFA is based on tracing the paths of individual particles through the detector
* The energy and momentum for each particle can then be extracted from the subdetector system in which we expect the measurement to be most accurate

* Vertex finder reconstructs primary and secondary vertices
* Jet clustering algorithm (Valencia) is applied
* Jets and vertices are fed into a BDT to get the flavourness of each jet

SECTION 3: DETECTOR PERFORMANCES

Detector performances are studied in full simulation with the iLCSoft (Linear Collider community software)

* Tracking performances
\rightarrow Pт $_{\text {t }}$ and impact parameter resolution
+ single particle efficiency (prompt and displaced)
* PFO performances
- jet energy resolution
+ W/Z mass separation
* Flavour tagging
- misidentification efficiency for beauty
- misidentification efficiency for charm
* Forward Calorimeter
- LumiCal angular resolution
- BeamCal reconstruction efficiency

Transverse momentum and impact parameter resolutions

$$
\sigma\left(d_{0}\right)=\sqrt{a^{2}+b^{2} \cdot \mathrm{GeV}^{2} /\left(p^{2} \sin ^{3} \theta\right)}
$$

* Achieved d_{0} resolution $2 \mu \mathrm{~m}$ for high energy muons in the barrel
- to identify heavy-flavor quark states and tau leptons

Tracking efficiency for single muons

+ Efficiency $=$ fraction of reconstructed particles out of the reconstructable MC particles

Tracking efficiency for displaced tracks

- Efficiency $=$ fraction of reconstructed particles out of the reconstructable MC particles
w Conformal mapping turns circles through the origin in (x, y) into straight lines in (u, v)
« => quadratic terms to include displaced tracks, but eventually X^{2} breaks down

Cuts for this plot:

+ $10<\theta<170 \mathrm{deg}$
- $\mathrm{pT}>1 \mathrm{GeV} / \mathrm{c}$

Min nr hits required for displaced tracks $=5$
to reduce the combinatorics

* Major strategy change
* broader search angle than for prompt tracks
* inverted order search: from tracker to vertex hits

Jet energy resolution

+ Resolution per single jet $(\mathrm{j})=\frac{\operatorname{RMS}_{90}\left(E_{j}\right)}{\operatorname{mean}_{90}\left(E_{j}\right)}=\frac{\operatorname{RMS}_{90}\left(E_{j j}\right)}{\text { mean }_{90}\left(E_{j j}\right)} \sqrt{2} \longrightarrow$ (no jet reconstruction at this stage)

* Ideal W / Z mass separation requires $\sigma_{\mathrm{m}} / \mathrm{m}=2.5 \%$, which translates into jet energy resolution $\sigma_{E} / E=3.5 \%$

W/Z mass separation

* Dijet mass (four exclusive jets) helps to reduce the low-mass bump

b-tagging

Energy dependence

dijets distributed in 10-90deg angle

Polar angle dependence dijets events at sqrt(s) $=200 \mathrm{GeV}$

Energy dependence

dijets distributed in 10-90deg angle

Polar angle dependence dijets events at sqrt(s) $=200 \mathrm{GeV}$

Forward Calorimeters performances

s LumiCal

- LumiCal clustering not feasible for YY ->hadrons overlay
- => BeamCal reconstruction applied to LumiCal

* BeamCal
+ 1.5TeV electrons with 40BX incoherent pairs (e+e-) overlaid

SECTION 4: THE CLICdet AS A DELPHES CARD

Fast detector simulation using a parametrization of the detector geometry, detector response and reconstruction of composite objects including efficiencies

* CLICdet as a Delphes Card
+ validation and performance
- inputs: tracking resolutions and efficiency, calorimeter segmentation and resolutions, single particle PFOs efficiency and isolation, b, c,tau tagging
+ current status, documentation and links

Validation and performance of the CLICdet Delphes Card

Validation: HZ with $\mathrm{Z} \rightarrow \mathrm{qq}, \mathrm{H} \rightarrow$ inclusive at 350 GeV

Status, documentation and useful links

* Current status of the CLICdet Delphes Card
+ good performance for jets and observables based on multiple jets kinematics
+ work in progress for improving the lepton performances
+ invariant masses are well reproduced
- widths are still under investigation
- impact of $Y Y$->hadrons at higher center of mass to be investigated
from Ulrike Schnoor (ulrike.schnoor@cern.ch)
- My fork on github: https:// github.com/uschnoor/delphes
- Documentation: https:// cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook
- How to use the current code with MadGraph (CLICdet adjustments not yet shipped with official code):
https://twiki.cern.ch/twiki/bin/view/CLIC/DelphesMadgraphForBSMReport

If you want to know more...

...about the detector model:

* CLICdet: the post-CDR CLIC detector model
+ https://cds.cern.ch/record/2234145/files/CLICdp-Draft-2016-025.pdf?version=1
...about the object reconstruction \& detector performances:
* Tracking
+ https://indico.cern.ch/event/656356/contributions/2845846/attachments/ 1587763/2511105/CLICWorkshop2018.pdf
- Calorimeters
+ https://indico.cern.ch/event/656356/contributions/2855848/attachments/ 1589352/2514491/180125_CLIC2018_PandoraPFA_Weber.pdf
* Flavour tagging
+ https://indico.cern.ch/event/656356/contributions/2845847/attachments/ 1587769/2511115/Flavour_tagging_CLICdet_IGarcia.pdf
* Forward calorimeters
- https://indico.cern.ch/event/656356/contributions/2845848/attachments/ 1587779/2511136/180123_CLICWeek_Fcal.pdf
* Note in preparation

Special thanks to Philipp Roloff, Andre Sailer, Ulrike Schnoor and Matthias Weber

BACKUP SLIDES

Tracking efficiency for displaced tracks: Zuds @ 500 GeV

Tracking efficiency for displaced tracks: Zuds @ 500 GeV

Tracking efficiency for displaced tracks: t̄̄, bБ @ 3 TeV

$$
\begin{aligned}
& \text { is } \mathrm{pT}>1 \mathrm{GeV} / \mathrm{c} \\
& \text { is } 10<\theta<170 \text { deg } \\
& \text { is } \text { purity }>75 \%
\end{aligned}
$$

