Probing Baryogenesis with Displaced Vertices

- from the LHC to CLIC

Yanou Cui

University of California-Riverside

- Phys.Rev.D, 87,11603, YC and Raman Sundrum
- JHEP 1312 (2013) 067, YC
- JHEP 1502 (2015) 049, YC and Brian Shuve
- Ongoing cooperation with ATLAS LLP working group
- Phys.Rev. D94 (2016) YC and Takemichi Okui, Arash Yunesi
- Work in progress, YC and Aniket Joglekar, Brian Shuve, Yuhsin Tsai

BSM Searches@CLIC meeting, Feb 21, 2018

Cosmological Motivation for LLP Searches

- Baryogenesis from Metastable Weak-scale New Particle

Could collider experimentents shed light on prominent puzzles in modern cosmology?

 $\Omega_{\text{DM}} \approx 23\%$, $\Omega_{\text{B}} \approx 5\%$, $\Omega_{\text{B}} \sim \Omega_{\text{DM}}$

- Familiar/well-studied case: WIMP dark matter (Ω_{DM})
 - Stable, weak-scale mass, can be produced within E_{LHC} =14 TeV
 - ▶ Pair produced (Z₂),
 - ► Invisible, MET + X

Cosmological Motivation for LLP Searches

- Baryogenesis from Metastable Weak-scale New Particle

• New opportunity: baryogenesis (address Ω_B , possibly + $\Omega_B \sim \Omega_{DM}$)

- New <u>metastable</u> particle (baryon parent), weak scale mass
- Pair produced (approx. Z_2)
- Displaced decay to $j/\ell/\text{MET}$ by cosmological condition!

The Unknown Aspects of the Known

- Baryon: proton, neutron atoms, stars, ourselves!
- Where does Ω_B come from?
- = Where do we ourselves come from?

NEUTRON Quark structure

PROTON Quark structure

The Unknown Aspects of the Known

- Baryon: proton, neutron atoms, stars, ourselves!
- Where does Ω_B come from?
- = Where do we ourselves come from?

We do not know!

NEUTRON Quark structure

The Unknown Aspects of the Known

- Baryon: proton, neutron atoms, stars, ourselves!
- Where does Ω_B come from?
- = Where do we ourselves come from?

We do not know!

The Unknown Aspects of the Known

- Baryon: proton, neutron atoms, stars, ourselves!
- Where does Ω_B come from?
- = Where do we ourselves come from?

We do not know!

 $\eta_B = (n_B - n_{\bar{B}})/n_{\gamma} \sim 10^{-10}$

Today

The Unknown Aspects of the Known

- Baryon: proton, neutron atoms, stars, ourselves!
- Where does Ω_B come from?
- = Where do we ourselves come from?

10,000,000,001

Baryon

We do not know!

10,000,000,000

Anti-baryon

symmetric annihilation Today

- the Origin of the Baryon Asymmetry

The Universe starts with B = 0,

 $B - \bar{B}$ asymmetry

Matter Anti-matter asymmetry

- the Origin of the Baryon Asymmetry

The Universe starts with B = 0,

 $B - \bar{B}$ asymmetry

Matter Anti-matter asymmetry

Sakharov Conditions (1967):

Sakharov Conditions (1967):

Require baryon number violation

Sakharov Conditions (1967):

Require baryon number violation

Require C-, CP-symmetry violation

Sakharov Conditions (1967):

Require baryon number violation

Require C-, CP-symmetry violation

Require departure from equilibrium!

Thermal equilibrium + CPT symmetry

$$\langle B \rangle_{\rm eq} = 0$$

Sakharov Conditions (1967):

Require baryon number violation

Require C-, CP-symmetry violation

Require departure from equilibrium!

Thermal equilibrium + CPT symmetry

Ω_B≈5%:

Need beyond the **Standard Model Particle Physics!**

Sakharov Conditions (1967):

Require baryon number violation

Require departure from equilibrium!

Thermal equilibrium + CPT symmetry

Most existing BG mechanisms: high M or/and T, <u>direct</u> experimental test impossible (contrast: WIMP DM for Ω_{DM})

Ω_B≈5%:

Need beyond the **Standard Model Particle Physics!**

Baryogenesis from Out-of-Equilibrium Decay

A general class of baryogenesis models

- Assume a massive neutral particle x
- Baryon asymmetry can be produced in its decay (B-, CP-violation)

- Typically, the inverse processes efficiently erase the asymmetry
- But, if χ is long-lived, and decays only after $T_f < M_{\chi}$: $\Gamma_{\chi} < H(T = M_{\chi})$

Baryogenesis from Out-of-Equilibrium Decay

An intriguing observation (YC, Sundrum 2012; YC, Shuve, 2014)

If χ has weak scale mass:

$$\Gamma_{\chi} < H(T = M_{\chi})$$
 $c\tau_{\chi} \gtrsim \text{mm}$

A generic connection between cosmological slow

rates at $T \sim 100 \text{ GeV}$ and displaced vertices at colliders!

Baryogenesis from Out-of-Equilibrium Decay

An intriguing observation (YC, Sundrum 2012; YC, Shuve, 2014)

If χ has weak scale mass:

$$\Gamma_{\chi} < H(T = M_{\chi})$$
 $c\tau_{\chi} \gtrsim \mathrm{mm}$

A generic connection between cosmological slow

rates at $T \sim 100 \text{ GeV}$ and displaced vertices at colliders!

Our universe around EW phase transition was just slightly bigger than LHC tracking resolution!

Baryogenesis from Meta-stable WIMP Decay

- concrete, motivated model examples

(YC and Sundrum 2012; YC 2014; YC and Okui, Yunesi 2016)

- WIMP miracle prediction for Ω_B + new path addressing $\Omega_B \sim \Omega_{DM}$
- General mechanism, easy to embed in RPV SUSY (natural or split)
 - Thermal annihilation of WIMP through e.g. Higgs or a singlet scalar *S*

Pair production of long-lived baryon parent WIMP at the LHC!

(YC and Shuve, 2014)

Classify production modes (analogy to DM search @LHC!)

(YC and Shuve, 2014)

Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions: wino/gluino-like (states in interference loop) $\chi \chi = \frac{2}{\sqrt{W/Z}}$

(YC and Shuve, 2014)

Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:

wino/gluino-like (states in interference loop)

Higgs portal:

singlet-like (e.g. $M_{\chi} = 150 \text{ GeV}$)

(YC and Shuve, 2014)

Classify production modes (analogy to DM search @LHC!)

(YC and Shuve, 2014)

Classify production modes (analogy to DM search @LHC!)

wino/gluino-like (states in interference loop)

Higgs portal:

singlet-like (e.g. $M_{\chi} = 150 \text{ GeV}$)

Classify decay modes (unlike DM search)

Baryon number violating:

$$\chi \to u_i d_j d_k$$

(YC and Shuve, 2014)

Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:

wino/gluino-like (states in interference loop)

Higgs portal:

singlet-like (e.g. $M_{\chi} = 150 \text{ GeV}$)

Classify decay modes (unlike DM search)

Baryon number violating:

$$\chi \to u_i d_j d_k$$

Lepton number violating:

$$\chi \to L_i Q_j \bar{d}_k$$
 $\chi \to L_i L_j \bar{E}_k$

Recast Existing LHC Searches

Focus on displaced decay in tracking volume

Near lower bound $c\tau_\chi \gtrsim {
m mm}$, better sensitivity to wide lifetime range, easier to model with theorists' tools! (decay in other parts of detector important too!)

Recast Existing LHC Searches

Focus on displaced decay in tracking volume

Near lower bound $c\tau_\chi \gtrsim \mathrm{mm}$, better sensitivity to wide lifetime range, easier to model with theorists' tools! (decay in other parts of detector important too!)

Two concrete examples (light-flavour only):

Baryon number violating:

$$\chi \to 3q$$

displaced jets (all-hadronic)

CMS, arXiv:1411.6530

Lepton number violating:

$$\chi \to \ell + 2q$$

displaced muon + tracks ATLAS-CONF-2013-092

Recast Existing LHC Searches

Focus on displaced decay in tracking volume

Near lower bound $c\tau_\chi \gtrsim \mathrm{mm}$, better sensitivity to wide lifetime range, easier to model with theorists' tools! (decay in other parts of detector important too!)

Two concrete examples (light-flavour only):

Baryon number violating:

$$\chi \to 3q$$

displaced jets (all-hadronic)

CMS, arXiv:1411.6530

Lepton number violating:

$$\chi \to \ell + 2q$$

displaced muon + tracks ATLAS-CONF-2013-092

Goal of our analysis:

- What is the coverage for our simplified models based on benchmarks chosen by the collaborations?
- What advice can we provide for general experimental improvement?

CMS displaced dijet, arXiv:1411.6530

CMS displaced dijet, arXiv:1411.6530

singlet-like (Higgs portal)

We studied a challenging case: $M_X = 150$ GeV, moderately off-shell!

No bound @ 8 TeV 20 fb⁻¹!

CMS displaced dijet, arXiv:1411.6530

wino

singlet-like (Higgs portal)

We studied a challenging case: $M_X = 150$ GeV, moderately off-shell!

No bound @ 8 TeV 20 fb-1!

13 TeV:

$L_{xy} = 3$ cm

CMS displaced dijet, arXiv:1411.6530

wino

singlet-like (Higgs portal)

We studied a challenging case: $M_X = 150$ GeV, moderately off-shell!

No bound @ 8 TeV 20 fb-1!

Displaced muon + Tracks

ATLAS-CONF-2013-092

wino

Displaced muon + Tracks

ATLAS-CONF-2013-092

wino

13 TeV: Tag 1 DV M~2.5 TeV (lower bkg than allhadronic)

singlet (Higgs portal)

(singlet-like, $M_{\chi} = 150 \text{ GeV}$)

No bound @ 8 TeV 20 fb⁻¹

• 13 TeV: σ_S~50 ab for *L_{xy}*~1 cm (Tag 1 DV)

Some Preliminary Thoughts

LHC has its limitations for DV searches, there are opportunities for CLIC!

• A general challenge at the LHC: trigger for low mass all-hadronic DV events (overwhelmed by large QCD background at a hadron collider!)
e.g. L1 H_T trigger at 13 TeV: H_T ≥ 500 GeV→ a big loss of signals from Higgs-portal production

Some Preliminary Thoughts

LHC has its limitations for DV searches, there are opportunities for CLIC!

- A general challenge at the LHC: trigger for low mass all-hadronic DV events (overwhelmed by large QCD background at a hadron collider!)
 e.g. L1 H_T trigger at 13 TeV: H_T ≥ 500 GeV→ a big loss of signals from Higgs-portal production
 - This is particularly relevant for WIMP BG! Out of equilibrium decay of <u>low mass</u> WIMP (≤100 GeV) typically occurs well after EW phase transition when sphaleron process (ΔL ⇔ ΔB) shuts off →

Has to be **B-violating** decay, i.e. hadronic final states!

- Some Preliminary Thoughts
- Another general challenge at the LHC: ultra longlived particles (simply MET? motivate MATHUSLA...)
- Relevance for WIMP BG: wider range of lifetimes (from weak scale to BBN), light WIMPs typically decay later

- Some Preliminary Thoughts
- Another general challenge at the LHC: ultra longlived particles (simply MET? motivate MATHUSLA...)
- Relevance for WIMP BG: wider range of lifetimes (from weak scale to BBN), light WIMPs typically decay later
- Optimizing the opportunity at the LHC to overcome/ relieve these challenges: worthwhile ongoing effort (e.g. work in progress: YC with Joglekar, Shuve, Tsai)

- Some Preliminary Thoughts
- Another general challenge at the LHC: ultra longlived particles (simply MET? motivate MATHUSLA...)
- Relevance for WIMP BG: wider range of lifetimes (from weak scale to BBN), light WIMPs typically decay later
- Optimizing the opportunity at the LHC to overcome/ relieve these challenges: worthwhile ongoing effort (e.g. work in progress: YC with Joglekar, Shuve, Tsai)
- CLIC has a clear edge vs. LHC!
 Lepton collider, much cleaner for hadronic states, should be much easier to trigger low-mass events

Some Preliminary Thoughts

Examples of CLIC's potential advantages over LHC:

- Singlet-like WIMP: limited sensitivity even after HL-LHC
 - Hadronically-decaying light WIMPs produced from light Z'
 - Hadronically-decaying light WIMPs produced from H-portal (caveat: the heavier Higgs in the S-H system may be easier to probe with the LHC)
- Wino-like WIMP: HL-LHC has excellent coverage for 1.5 TeV (or higher) mass wino with $L_{xy}\sim 1$ cm, hard to beat; but not for much longer $L_{xy}!$
 - Advantages with CLIC: MET+mono- γ , suppressed bkg from jet punch-through for decay in μ -spectrometer

Dedicated consideration/design with CLIC certainly helps!

Summary/Outlook

- · Baryogenesis from metastable weak scale particle decay:
 - A robust cosmological motivation for DV searches
 - Exciting opportunity to reproduce and study the early universe BG @ collider experiments today! (cf. WIMP DM search)
- WIMP baryogenesis: a motivated example, new mechanism addressing Ω_B (+) $\Omega_B \sim \Omega_{DM}$, natural embedding in SUSY
- Good reaches at HL-LHC for certain models/parameter regions, but still great potential for improvement with CLIC!