Looking forward The Precision Proton Spectrometer at the LHC

Michele Gallinaro

LIP Lisbon May 26, 2018

Overview
 Physics motivations
 Tracking and timing detectors
 Status, R&D, and prospects
 Summary

Overview

- It is a joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Approved (2014), exploratory phase in 2015, data taking started in 2016, pixels installed from 2017, full detectors in 2018

CMS-TOTEM PRECISION PROTON SPECTROMETER

PPS 210 m 210 m PPS

Physics motivations

Central Exclusive Production

- photon-photon collisions
- gluon-gluon fusion in color singlet, $J^{PC}=0^+$
- High-mass system in central detector, together with very forward protons in PPS
 - momentum balance between central system and forward protons, provides strong kinematical constraints
 - Mass of central system measured by momentum loss of the two leading protons
- Gauge boson production by photon-photon fusion and anomalous couplings (γγWW, γγZZ, and γγγγ)
- Search for new BSM resonances
- Study of QCD in a new domain

arXiv:1803.04496

presentation by J. Hollar

- Study exclusive processes at the EWK scale
- Observation of γγ interaction with proton tag

- Correlation between the ξ values in central system vs PPS
- 12µµ, 8ee candidates observed
 (>5σ over expected bkg)

Experimental challenges

- Ability to operate the detectors close to beam (15-20σ, i.e. ~1-3 mm) to maximize acceptance for low momentum loss (ξ) protons
- Limit impedance introduced by beam pockets
 - improved RF shielding of RPs
- Sustain high radiation levels
 - For 100/fb, proton flux up to 5x10¹⁵cm⁻² in tracking detectors, 10¹²n_{eq}/cm² and 100Gy in photosensors and readout electronics
- Reject background in the high-pileup (μ =50) of normal LHC running

Data taking

- Successful RP insertions in 2016 at 15σ
- Regular near-beam operation at highluminosity
- 2016 collected ~15/fb
 - Silicon strips+diamond
- 2017 collected ~40/fb
 - Tracking: silicon strips + 3D silicon pixels (first installation in CMS)
 - Timing: diamond+UFSD (1st time in HEP)
 - Detectors fully integrated in central DAQ from first fill
- 2018 expect to collect ~50/fb (?)
 - full scope with Si pixels+diamonds

Detectors in 2017 and 2018

PPS in 2018

LHC tunnel @ PPS location

214m

CT-PPS tracking

beam

220m CT-PPS tracking

215m

CT-PPS timina

Roman Pot insertion

- Insertion procedure validated in 2016 by the LHC
 - Improvements carried out wrt earlier versions (RF shielding, cylindrical pots, ferrite, copper coating)
- Minimum distance of approach dramatically affects detector acceptance and physics reach
- Goal is 15σ from beam in nominal high-luminosity runs
 - Monitor beam losses, showers, interplay with collimators, beam impedance (heating, vacuum and beam orbit stability)

Detector alignment

Relative alignment

- Dedicated low-lumi alignment runs
- One per beam optics setting
- Detector approach to beam edge
- Inter-detector alignment with overlapping vertical-horizontal detectors (minimize residuals)
- Alignment wrt beam from hit occupancy distributions

Global alignment

- Each ``physics" fill
- Match x distribution from alignment fill

RP Acceptance in 2018

Reference Timing

presentation by E. Bossini

Provide absolute measurement of time of arrival wrt clock edge

Reference clock: system providing low jitter (<1ps) replica of master clock

1. "RF clock": relative timing

- Locks the two arms
- absolute timing tied to internal clock in one arm

2. "Optical clock": absolute timing

- Absolute taken from beam 1 (CMS source)
- Then, sent to two arms
- Status
 - Use RF clock as main precise clock
 - optical clock as input to HPTDC
 - cross-monitoring possible

Detectors

Tracking detectors

- -Goal: measure proton momentum
- -Technology: silicon 3D pixels (6 planes per pot)

Timing detectors

- -Goal: identify primary vertex, reject "pileup"
- $-\sigma_{time}$ ~10ps $\Rightarrow \sigma_{z}$ ~2mm
- -Technology: silicon/diamond

"3D" pixel sensors with columnar electrodes

Tracking detectors

Silicon strips

presentation by F. Ravera

- 10 planes per station of "edgeless" silicon strip detectors (5U+5V)
- Pitch 66μm; track resolution ~12μm
- Designed for low-lumi running
- Used in 2016 and 2017

- 6 planes per station of "slim-edge" tilted silicon 3D pixel detectors
- Pixel size 100μm x 150μm; track resolution ~20μm
- Designed for high-lumi running
- Multi-track capability

Tracking detectors

- 3D silicon pixel detectors
- 2 stations per side, 6 detector planes each pot
- Planes tilted to optimize efficiency and resolution
- Thin design studied to minimize impact on beam, insertion in pot, approach to beam
- Designed for high-luminosity running
- Multi-track capability

FBK 11-37-02: Cell Efficiency at 0 degree

M. Gallinaro - "The Precision Proton Spectrometer at the LHC" - Biodola, May 26, 2018

-300

-250

200

-150

ງ 150 ×(µmma) 100

Tracking detectors (cont.)

Sensors:

- 3D sensor technology
- Intrinsic radiation hardness (to withstand overall integrated flux of 5x10¹⁵ protons/cm²
- Pixel size 100µm x150µm
- 150µm slim edges (small dead edge to approach beam as close as possible)
- Spatial resolution <30µm

Front-end:

- PSI46dig, same as CMS Pixel Phase 1 upgrade
- Phase 1 DAQ components

p* col, p-stop p-stop p* col, p* sub.

Bump

Tracking: status and performance

- Excellent performance of pixel detectors in 2017
 - Track resolutions compatible with expectations
- RP movement and BX shift to cope with radiation
- New detectors installed in 2018 (replacing strip detectors)
- Detector packages swapped btw 45 and 56 to minimize inefficiency
- Excellent spatial resolution, consistent with beam tests
- Single track events ~40%

Tracking: Radiation

- Non-uniform irradiation
- Pixels not responding in same BX
- Effect due to readout chip

- Localized radiation damage near beam spot after ~10/fb
- Shift detector package to cope with radiation
- New stations with piezoelectric motor connected to detector package

Timing detectors

Time-of-flight measurement to reject pileup bkg (uncorrelated proton tracks)

• Desired resolution 20ps \Rightarrow 4mm

Ultra-Fast Silicon

- 1 plane (in 2017) per station
- Pixels of different sizes
- From test beam: single plane resolution ~30ps
- Will be used in high-β special run
- R&D to improve radiation hardness

Diamonds

- 4 planes per station
- Pixels of different sizes
- Single plane resolution ~80ps
- Radiation hard

presentation by N. Minafra

Diamond detectors

Diamond detectors

- σ_T ~80ps per plane, i.e. ~50ps with 4 planes
- Four 4x4mm² sensors per plane
- Variable pad dimensions to optimize occupancy
- Custom-made readout electronics
 NINO (discriminator)+HPTDC
- Intrinsic radiation hardness
- Allow for high granularity

Timing detector R&D

Pursuing R&D to improve performance

• Diamonds, silicon-based, quartz, etc.

Challenges

- Radiation-hardness
- Fast signals
- Finer segmentation reducing channel occupancy
- Thin and light, allow multiple layers N
 - reducing nuclear interaction
 - time resolution ~1/sqrt(N)

Double diamond layer

- Connected "sandwich" with two diamond sensors
- Beam tests in 2016/2017
- Performance improved: time resolution of 50 ps/plane (instead of 85-90ps) for 0.5x0.45mm sensors
 - Larger signal amplitude dominant over extra capacitance
- With 4 diamond sandwich-planes could reach 25 ps

Ultra-Fast Silicon Detectors

- Silicon Detectors for timing measurements
- Low Gain Avalanche Detectors
 - $-50 \mu m$ thickness
- Thin sensors
 - Higher collection efficiency
 - Short drift time
- Time resolution
 - Preliminary results at test beam: time resolution ~30-40ps @50um-thickness
- 2017: 1 plane used (first time in HEP)
- Radiation hardness
 - Lifetime ~10¹⁴ p/cm²
 - R&D to improve rad-hardness ongoing
 - Carbon doping offers x2 rad-hardness
- High segmentation

Prospects for Run3 and beyond

- More luminosity in a more challenging environment
- Will enhance the mass reach in the search for new particles
- Need to meet experimental challenges
 - Aging of detector, improve/adapt capability
 - Integrated luminosity: 300-3000/fb
 - peak luminosity of 2x10³⁵cm⁻²s⁻¹
 - pileup will be ~150 or higher (Phase2)
 - large radiation doses

presentations by N. Turini, M. Deile

BSM searches: resonances, etc.

Summary

- PPS extends coverage to very forward regions
 - Additional sensitivity to New Physics searches
 - Collected ~50/fb in 2016/2017
 - Taking data in 2018 with improved detectors
- Exclusive dilepton production
 - Exclusive process at the EWK scale
 - First physics results published
 - More data to be analyzed and to be collected in 2018
- PPS regularly taking data in high-luminosity fills

